首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study considers the problem of control and synchronization between fractional‐order and integer‐order, N‐components reaction‐diffusion systems with nonidentical coefficients and different nonlinear parts. The control scheme is designed using the Lyapunov direct method. The results are exemplified by two significant biochemical models, namely, the fractional‐order Lengyel‐Epstein model and the Gray‐Scott model. To illustrate the effectiveness of the proposed scheme, numerical simulations are performed in one and two space dimensions using Homotopy Analysis Method (HAM).  相似文献   

3.
This paper concentrates on the global synchronization of the fractional‐order multi‐linked complex network (FMCN) via periodically intermittent control. It should be stressed that periodically intermittent control is employed to the FMCN for the first time. Moreover, the network is defined on digraphs with different weights, and two situations on topological structure of the network are discussed, including each digraph being strongly connected, and the biggest one being strongly connected. Based on Lyapunov method and graph theory, some synchronization criteria are obtained under two situations. And, the obtained synchronization criteria have a close relationship with the order of fractional‐order derivative, coupling strength, control gain, control rate, and control period. Besides, for practicability, theoretical results are applied to studying the synchronization of fractional‐order multi‐linked chaotic systems, and some sufficient conditions are provided. For a special case, fractional‐order multi‐linked Lorenz chaotic systems, numerical simulations are given to indicate the feasibility of theoretical results and the effectiveness of control strategy.  相似文献   

4.
This paper investigates the asymptotical stability of Riemann‐Liouville q‐fractional neutral systems with mixed delays (constant time delay and distributed delay). By constructing some appropriate Lyapunov‐Kravsovskii functionals, some sufficient conditions on delay‐dependent and delay‐independent asymptotical stability are obtained in terms of linear matrix inequality (LMI). Our employed method is based on the direct calculation of quantum derivatives of the Lyapunov‐Kravsovskii functionals. Finally, two examples are presented to demonstrate the availability of our obtained results.  相似文献   

5.
This article deals with the problem of synchronization of fractional‐order memristor‐based BAM neural networks (FMBNNs) with time‐delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional‐order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master‐slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite‐time synchronization of FMBNNs with fractional‐order 1 < α < 2, using Mittag‐Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time‐delay and fractional‐order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity 21: 412–426, 2016  相似文献   

6.
Dissipativity theory is a very important concept in the field of control system. In this paper, we pay attention to the problem of dissipativity analysis of memristive neural networks with time‐varying delay and randomly occurring uncertainties(ROUs). Under the framework of Filippov solution, differential inclusion theory, by employing a proper Lyapunov functional, and some inequality techniques, the dissipativity criteria are obtained in terms of LMIs. It should be noteworthy that the uncertainty terms as well as the ROUs are separately taken into consideration, in which the uncertainties are norm‐bounded and the ROUs obey certain mutually uncorrelated Bernoulli‐distributed white noise sequences. Finally, the effectiveness of the proposed method will be verified via numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
An inverse problem of determining a time‐dependent source term from the total energy measurement of the system (the over‐specified condition) for a space‐time fractional diffusion equation is considered. The space‐time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional‐order time derivative and Sturm‐Liouville operator by fractional‐order Sturm‐Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.  相似文献   

9.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

10.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

11.
In this article, a synchronization problem for complex dynamical networks with additive time‐varying coupling delays via non‐fragile control is investigated. A new class of Lyapunov–Krasovskii functional with triple integral terms is constructed and using reciprocally convex approach, some new delay‐dependent synchronization criteria are derived in terms of linear matrix inequalities (LMIs). When applying Jensen's inequality to partition double integral terms in the derivation of LMI conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. To handle such a combination, an effective method is introduced by extending the lower bound lemma. Then, a sufficient condition for designing the non‐fragile synchronization controller is introduced. Finally, a numerical example is given to show the advantages of the proposed techniques. © 2014 Wiley Periodicals, Inc. Complexity 21: 296–321, 2015  相似文献   

12.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

13.
Ping He  Yangmin Li 《Complexity》2016,21(Z2):42-53
The reaction‐diffusion neural network is often described by semilinear diffusion partial differential equation (PDE). This article focuses on the asymptotical synchronization and synchronization for coupled reaction‐diffusion neural networks with mixed delays (that is, discrete and infinite distributed delays) and Dirichlet boundary condition. First, using the Lyapunov–Krasoviskii functional scheme, the sufficient condition is obtained for the asymptotical synchronization of coupled semilinear diffusion PDEs with mixed time‐delays and this condition is represented by linear matrix inequalities (LMIs), which is easy to be solved. Then the robust synchronization is considered in temporal‐spatial domain for the coupled semilinear diffusion PDEs with mixed delays and external disturbances. In terms of the technique of completing squares, the sufficient condition is obtained for the robust synchronization. Finally, a numerical example of coupled semilinear diffusion PDEs with mixed time‐delays is given to illustrate the correctness of the obtained results. © 2016 Wiley Periodicals, Inc. Complexity 21: 42–53, 2016  相似文献   

14.
This article investigates the optimal synchronization of two different fractional‐order chaotic systems with two kinds of cost function. We use calculus of variations for minimizing cost function subject to synchronization error dynamics. We introduce optimal control problem to solve fractional Euler–Lagrange equations. Optimal control signal and minimum time of synchronization are obtained by proposed method. Examples show the optimal synchronization of two different systems with two different cost functions. First, we use an ordinary integer cost function then we use a fractional‐order cost function and comparing the results. Finally, we suggest a cost function which has the optimal solution of this problem, and we can extend this solution to solve other synchronization problems. © 2016 Wiley Periodicals, Inc. Complexity 21: 401–416, 2016  相似文献   

15.
This article investigates the problem of robust dissipative fault‐tolerant control for discrete‐time systems with actuator failures. Based on the Lyapunov technique and linear matrix inequality (LMI) approach, a set of delay‐dependent sufficient conditions is developed for achieving the required result. A design scheme for the state‐feedback reliable dissipative controller is established in terms LMIs which can guarantee the asymptotic stability and dissipativity of the resulting closed‐loop system with actuator failures. In addition, the proposed controller not only stabilize the fault‐free system but also to guarantee an acceptable performance of the faulty system. Also as special cases, robust H control, passivity control, and mixed H and passivity control with the prescribed performances under given constraints can be obtained for the considered systems. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed fault‐tolerant control technique. © 2016 Wiley Periodicals, Inc. Complexity 21: 579–592, 2016  相似文献   

16.
Haibo Bao  Ju H. Park  Jinde Cao 《Complexity》2016,21(Z1):106-112
This article presents new theoretical results on the synchronization for a class of fractional‐order delayed neural networks with hybrid coupling that contains constant coupling and discrete‐delay coupling. This is the first attempt to investigate the synchronization problem of fractional‐order coupled delayed neural networks. Based on the fractional‐order Lyapunov stability theorem and Kronecker product properties, sufficient criteria are established to ensure the fractional‐order coupled neural network to achieve synchronization. Numerical simulations are given to illustrate the correctness of the theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 106–112, 2016  相似文献   

17.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

18.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

19.
This paper deals with radial solutions to localized reaction‐diffusion equations with variable exponents, subject to homogeneous Dirichlet boundary conditions. The global existence versus blow‐up criteria are studied in terms of the variable exponents. We proposed that the maximums of variable exponents are the key clue to determine blow‐up classifications and describe blow‐up rates for positive solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a class of cellular neural networks with neutral proportional delays and time‐varying leakage delays is considered. Some results on the finite‐time stability for the equations are obtained by using the differential inequality technique. In addition, an example with numerical simulations is given to illustrate our results, and the generalized exponential synchronization is also established. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号