首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid‐state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high‐sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in‐cell solution‐state NMR spectroscopy due to molecular size limitations.  相似文献   

2.
The synthesis of a set of tetrazine‐bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through‐bond energy‐transfer‐based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse‐electron‐demand Diels–Alder reaction with proteins modified genetically with strained trans‐cyclooctenes.  相似文献   

3.
While chemical protein synthesis has granted access to challenging proteins, the synthesis of longer proteins is often limited by low abundance or non‐strategic placement of cysteine residues, which are essential for native chemical ligations, as well as multiple purification and isolation steps. We describe the one‐pot total synthesis of human thiosulfate:glutathione sulfurtransferase (TSTD1). WT‐TSTD1 was synthesized in a C‐to‐N synthetic approach involving multiple NCL reactions, CuII‐mediated deprotection of selenazolidine (Sez), and chemoselective deselenization. The seleno‐analog Se‐TSTD1, in which the active site Cys is replaced with selenocysteine, was also synthesized with a kinetically controlled ligation with an N‐to‐C synthetic approach. The catalytic activity of the two proteins indicated that Se‐TSTD1 possessed only four‐fold lower activity than WT‐TSTD1, thus suggesting that selenoproteins can have physiologically comparable sulfutransferase activity to their cysteine counterparts.  相似文献   

4.
5.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

6.
The development of bioorthogonal approaches for labeling of endogenous proteins under the multimolecular crowding conditions of live cells is highly desirable for the analysis and engineering of proteins without using genetic manipulation. N‐Sulfonyl pyridone (SP) is reported as a new reactive group for protein sulfonylation. The ligand‐directed SP chemistry was able to modify not only purified proteins in vitro, but also endogenous ones on the surface of and inside live cells selectively and rapidly, which allowed to convert endogenous proteins to FRET‐based biosensors in situ.  相似文献   

7.
《Electroanalysis》2017,29(2):319-323
Studies of protein interactions with chemically modified nucleic acids are of importance in various areas of biomolecular and biomedical research, including investigations of the binding of proteins important in medicine with DNA modified with drugs and diagnostic applications of modified DNAs in biosensing and bioanalysis. Chemical modification of DNA substrates with various species inside or outside specific protein binding sites can affect the protein‐DNA recognition. In this paper we present a simple electrochemical immunoprecipitation technique designed for evaluation of the effects of antitumor drug cisplatin on the p53‐DNA binding. The cisplatin‐DNA adducts are utilized as electroactive labels allowing a facile determination of the p53‐bound modified DNA. Effects observed using this technique accord with results of previous biochemical assays. This approach is potentially applicable in studies that deal with the influence of any electroactive DNA modifications on the protein‐DNA binding.  相似文献   

8.
The synthesis and characterization of a new protein–polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self‐assemble by super‐charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein–polymer conjugates self‐assemble into spherical capsules of 80–100 nm in diameter. The self‐assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein–polymer conjugate. These protein–polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins.  相似文献   

9.
We report here the first synthesis of Te‐nucleoside phosphoramidites and Te‐modified oligonucleotides. We protected the 2′‐tellurium functionality by alkylation and found that the Te functionality is compatible with solid‐phase synthesis and that the Te oligonucleotides are stable during deprotection and purification. In addition, the redox properties of the Te functionalities have been explored. We found that the telluride and telluoxide DNAs are interchangeable by redox reactions. At elevated temperature, the Te‐DNA can also be site‐specifically fragmented oxidatively or reductively when 2′‐TePh functionality is present, whereas elimination of the nucleobase is observed in the presence of 2′‐TeMe. Moreover, the stability of the DNA duplexes derivatized with the Te functionalities has been investigated. Our Te derivatization of nucleic acids provides a novel approach for investigating DNA damage as well as for structure and function studies of nucleic acids and their protein complexes.  相似文献   

10.
Pathogenic bacteria have become a serious socio‐economic concern. Immunomagnetic separation‐based methods create new possibilities for rapidly recognizing many of these pathogens. The aim of this study was to use superparamagnetic particles‐based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II) containing proteins (Zn‐proteins). The isolated bacteria were immediately purified and disintegrated prior to immunoextraction of Zn‐proteins by superparamagnetic beads modified with chicken anti‐Zn(II) antibody. S. aureus culture was treated with ZnCl2. Optimal pathogen isolation and subsequent disintegration assay steps were carried out with minimal handling. (i) Optimization of bacteria capturing: Superparamagnetic microparticles composed of human IgG were used as the binding surface for acquiring live S. aureus. The effect of antibodies concentration, ionic strength, and incubation time was concurrently investigated. (ii) Optimization of zinc proteins isolation: pure and intact bacteria isolated by the optimized method were sonicated. The extracts obtained were subsequently analyzed using superparamagnetic particles modified with chicken antibody against zinc(II) ions. (iii) Moreover, various types of bacterial zinc(II) proteins precipitations from particle–surface interactions were tested and associated protein profiles were identified using SDS‐PAGE. Use of a robotic pipetting system sped up sample preparation to less than 4 h. Cell lysis and Zn‐protein extractions were obtained from a minimum of 100 cells with sufficient yield for SDS‐PAGE (tens ng of proteins). Zn(II) content and cell count in the extracts increased exponentially. Furthermore, Zn(II) and proteins balances were determined in cell lysate, extract, and retentate.  相似文献   

11.
Crystallography and nuclear magnetic resonance are well‐established methods to study protein tertiary structure and interactions. Despite their usefulness, such methods are not applicable to many protein systems. Chemical cross‐linking of proteins coupled with mass spectrometry allows low‐resolution characterization of proteins and protein complexes based on measuring distance constraints from cross‐links. In this work, we have investigated cross‐linking by means of a heterobifunctional cross‐linker containing a traditional N‐hydroxysuccinimide (NHS) ester and a UV photoactivatable diazirine group. Activation of the diazirine group yields a highly reactive carbene species, with potential to increase the number of cross‐links compared with homobifunctional, NHS‐based cross‐linkers. Cross‐linking reactions were performed on model systems such as synthetic peptides and equine myoglobin. After reduction of the disulfide bond, the formation of intra‐ and intermolecular cross‐links was identified and the peptides modified with both NHS and diazirine moieties characterized. Fragmentation of these modified peptides reveals the presence of a marker ion for intramolecular cross‐links, which facilitates identification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The chemical synthesis of the 184‐residue ferric heme‐binding protein nitrophorin 4 was accomplished by sequential couplings of five unprotected peptide segments using α‐ketoacid‐hydroxylamine (KAHA) ligation reactions. The fully assembled protein was folded to its native structure and coordinated to the ferric heme b cofactor. The synthetic holoprotein, despite four homoserine residues at the ligation sites, showed identical properties to the wild‐type protein in nitric oxide binding and nitrite dismutase reactivity. This work establishes the KAHA ligation as a valuable and viable approach for the chemical synthesis of proteins up to 20 kDa and demonstrates that it is well‐suited for the preparation of hydrophobic protein targets.  相似文献   

13.
A versatile method is described to engineer precisely defined protein/peptide–polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin‐like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme‐mediated ligation; and 3) attachment of a polymer by a click reaction with near‐quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water‐soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide–polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide–polymer conjugates for therapeutic use and other applications.  相似文献   

14.
Cyclooxygenase‐2 (COX‐2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX‐2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity‐based sensing approach for monitoring COX‐2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX‐2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen‐dependent changes in COX‐2 activity that are independent of protein expression within live macrophage cells.  相似文献   

15.
The preparation of native S‐palmitoylated (S‐palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S‐palm membrane proteins by removable‐backbone‐modification‐assisted Ser/Thr ligation (RBMGABA‐assisted STL). This method involves two critical steps: 1) synthesis of S‐palm peptides by a new γ‐aminobutyric acid based RBM (RBMGABA) strategy, and 2) ligation of the S‐palm RBM‐modified peptides to give the desired S‐palm product by the STL method. The utility of the RBMGABA‐assisted STL method was demonstrated by the synthesis of rabbit S‐palm sarcolipin (SLN) and S‐palm matrix‐2 (M2) ion channel. The synthesis of S‐palm membrane proteins highlights the importance of developing non‐NCL methods for chemical protein synthesis.  相似文献   

16.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

17.
Metal‐mediated intracellular reactions are becoming invaluable tools in chemical and cell biology, and hold promise for strongly impacting the field of biomedicine. Most of the reactions reported so far involve either uncaging or redox processes. Demonstrated here for the first time is the viability of performing multicomponent alkyne cycloaromatizations inside live mammalian cells using ruthenium catalysts. Both fully intramolecular and intermolecular cycloadditions of diynes with alkynes are feasible, the latter providing an intracellular synthesis of appealing anthraquinones. The power of the approach is further demonstrated by generating anthraquinone AIEgens (AIE=aggregation induced emission) that otherwise do not go inside cells, and by modifying the intracellular distribution of the products by simply varying the type of ruthenium complex.  相似文献   

18.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

19.
Native chemical ligation combined with desulfurization has become a powerful strategy for the chemical synthesis of proteins. Here we describe the use of a new thiol additive, methyl thioglycolate, to accomplish one‐pot native chemical ligation and metal‐free desulfurization for chemical protein synthesis. This one‐pot strategy was used to prepare ubiquitin from two or three peptide segments. Circular dichroism spectroscopy and racemic protein X‐ray crystallography confirmed the correct folding of ubiquitin. Our results demonstrate that proteins synthesized chemically by streamlined 9‐fluorenylmethoxycarbonyl (Fmoc) solid‐phase peptide synthesis coupled with a one‐pot ligation–desulfurization strategy can supply useful molecules with sufficient purity for crystallographic studies.  相似文献   

20.
《化学:亚洲杂志》2017,12(1):122-129
We report the construction of a non‐toxic nanoassembly of bovine serum albumin (BSA) protein and the cucurbit[7]uril macrocycle as well as its stimuli‐responsive breakage with adamantylamine or pH, which restores the protein structure and recognition properties. The assembly showed efficient loading and controlled release of a standard drug, doxorubicin (DOX), and the same was validated in live cells. The cell viability studies documented that the DOX‐loaded assembly mask the cytotoxicity of DOX and the toxicity can be revived at the target on demand, triggering its therapeutic activation. This is found to be more effective in the cancer cells. In addition, such host‐assisted protein assemblies are also highly promising for stabilizing/protecting the native protein structure, a viable approach to prevent/inhibit protein misfolding and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号