首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

2.
《Electrophoresis》2018,39(2):417-424
Herein, we proposed a strategy for controlling the particle focusing position in Dean‐coupled elasto‐inertial flows via adjusting the polymer concentration of viscoelastic fluids. The physics behind the control strategy was then explored and discussed. At high polymer concentrations, the flowing particles could be single‐line focused exactly at the channel centerline under the dominated elastic force. The center‐line focusing in our spiral channel may employed as a potential pretreatment scheme for microflow cytometry detection. With further decreasing polymer concentrations, the particles would shift into the outer channel region under the comparable competition between inertial lift force, elastic force and Dean drag force. Finally, the observed position‐shifting was successfully employed for particle concentration at a throughput much higher than most existing elasto‐inertial microfluidics.  相似文献   

3.
Spencer D  Morgan H 《Lab on a chip》2011,11(7):1234-1239
Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.  相似文献   

4.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   

5.
JY Kim  SW Ahn  SS Lee  JM Kim 《Lab on a chip》2012,12(16):2807-2814
Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.  相似文献   

6.
The sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume. The detection region consists of two pairs of electrodes fabricated within a channel 200 μm wide and 30 μm high. The focussing technique increases the sensitivity of the system without reducing the dimensions of the microfluidic channel. We demonstrate detection and discrimination of 1 μm and 2 μm diameter polystyrene beads and also Escherichia coli. Impedance data from single particles are correlated with fluorescence emission measured simultaneously. Data are also compared with conventional flow cytometry and dynamic light scattering: the coefficient of variation (CV) of size is found to be comparable between the systems.  相似文献   

7.
Separation of microparticle in viscoelastic fluid is highly required in the field of biology and clinical medicine. For instance, the separation of the target cell from blood is an important prerequisite step for the drug screening and design. The microfluidic device is an efficient way to achieve the separation of the microparticle in the viscoelastic fluid. However, the existing microfluidic methods often have some limitations, including the requirement of the long channel length, the labeling process, and the low throughput. In this work, based on the elastic-inertial effect in the viscoelastic fluid, a new separation method is proposed where a gradually contracted microchannel is designed to efficiently adjust the forces exerted on the particle, eventually achieving the high-efficiency separation of different sized particles in a short channel length and at a high throughput. In addition, the separation of WBCs and RBCs is also validated in the present device. The effect of the flow rate, the fluid property, and the channel geometry on the particle separation is systematically investigated by the experiment. With the advantage of small footprint, simple structure, high throughput, and high efficiency, the present microfluidic device could be utilized in the biological and clinical fields, such as the cell analysis and disease diagnosis.  相似文献   

8.
Precise and reliable liquid delivery is vital for microfluidic applications. Here, we illustrate the design, fabrication, characterization, and application of a portable, low cost, and robust micropump, which brings solution to stable liquid delivery in microfluidic environment. The pump is designed with three optional speeds of different pumping flow rates, and it can be simply actuated by spring‐driven mechanism. The different flow rates of the pump are realized via passive microvalves in a compact microfluidic chip, which is installed in the pump. Importantly, the membrane structures of the microvalves allow accurate liquid control, and stable flow rates can be achieved via a spring setup. The proposed pump is applied to continuously and stably infuse microbead suspension into an inertial microfluidic chip, and good particle focusing is realized in the spiral channel of the inertial microfluidic chip. The proposed portable, self‐powered, and cost‐efficient pump is crucial for microfluidic lab‐on‐a‐chip system integration, which may facilitate microfluidic application for precise liquid delivery, control, measurement, and analysis.  相似文献   

9.
Insulator‐based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non‐Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear‐thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear‐thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear‐thinning PAA solution.  相似文献   

10.
This paper reports an impedance‐based system for the quantitative assessment of dielectrophoretic (DEP) focusing of single particles flowing in a microchannel. Particle lateral positions are detected in two electrical sensing zones placed before and after a DEP‐focusing region, respectively. In each sensing zone, particle lateral positions are estimated using the unbalance between the opposite pulses of a differential current signal obtained with a straightforward coplanar electrode configuration. The system is used to monitor the focusing of polystyrene beads of 7 or 10 μm diameter, under various conditions of DEP field intensities and flow rates that produce different degrees of focusing. This electrical approach represents a simple and valuable alternative to optical methods for monitoring of particle focusing systems.  相似文献   

11.
Lim EJ  Ober TJ  Edd JF  McKinley GH  Toner M 《Lab on a chip》2012,12(12):2199-2210
Inertial microfluidics has demonstrated the potential to provide a rich range of capabilities to manipulate biological fluids and particles to address various challenges in biomedical science and clinical medicine. Various microchannel geometries have been used to study the inertial focusing behavior of particles suspended in simple buffer solutions or in highly diluted blood. One aspect of inertial focusing that has not been studied is how particles suspended in whole or minimally diluted blood respond to inertial forces in microchannels. The utility of imaging techniques (i.e., high-speed bright-field imaging and long exposure fluorescence (streak) imaging) primarily used to observe particle focusing in microchannels is limited in complex fluids such as whole blood due to interference from the large numbers of red blood cells (RBCs). In this study, we used particle trajectory analysis (PTA) to observe the inertial focusing behavior of polystyrene beads, white blood cells, and PC-3 prostate cancer cells in physiological saline and blood. Identification of in-focus (fluorescently labeled) particles was achieved at mean particle velocities of up to 1.85 m s(-1). Quantitative measurements of in-focus particles were used to construct intensity maps of particle frequency in the channel cross-section and scatter plots of particle centroid coordinates vs. particle diameter. PC-3 cells spiked into whole blood (HCT = 45%) demonstrated a novel focusing mode not observed in physiological saline or diluted blood. PTA can be used as an experimental frame of reference for understanding the physical basis of inertial lift forces in whole blood and discover inertial focusing modes that can be used to enable particle separation in whole blood.  相似文献   

12.
惯性效应在微流控芯片中的应用   总被引:3,自引:0,他引:3  
项楠  朱晓璐  倪中华 《化学进展》2011,23(9):1945-1958
作为一种操控粒子或流体的新技术,基于流体惯性的操控技术已被应用于微流控芯片中粒子的输运、分选、聚焦及试样的混合和反应等操作,而在微尺度惯性效应基础上的惯性微流控芯片由于具有高通量、无需外场介入、低成本、易集成及微型化等众多优点,可用于解决医疗诊断、生化分析、合成化学及环境监测等领域的检测分析和微量操控问题,因此对该技术的机理及应用研究已成为目前微流控技术领域一个重要的研究热点。本文在介绍惯性微流控芯片机理及其研究进展的同时,从惯性聚焦、惯性分选及基于Dean流的微混合器和微流控光学器件等几个方面对惯性微流控芯片的最新应用研究进展进行了较为详细的介绍和分析比较。在此基础上,分析了惯性微流控芯片的局限和未来需要解决的问题。  相似文献   

13.
Parichehreh V  Sethu P 《Lab on a chip》2012,12(7):1296-1301
A new microfluidics technique that exploits the selectivity of phase partitioning and high-speed focusing capabilities of the inertial effects in flow was developed for continuous label-free sorting of particles and cells. Separations were accomplished by introducing particles at the interface of polyethylene glycol (PEG) and dextran (DEX) phases in rectangular high aspect-ratio microfluidic channels and allowing them to partition to energetically favorable locations within the PEG phase, DEX phase or interface at the center of the microchannel. Separation of partitioned particles was further enhanced via inertial lift forces that develop in high aspect-ratio microchannels that move particles to equilibrium positions close to the outer wall. Combining phase partitioning with inertial focusing ensures selectivity is possible using phase partitioning with sufficient throughput (at least an order of magnitude greater than phase partitioning alone) for application in the clinical and research setting. Using this system we accomplished separation of 15 μm polystyrene (PS) particles from 1-20 μm polymethylmethacrylate (PMMA) particles. Results confirm the feasibility of separation based on phase partitioning and enhancement of separation via inertial focusing. Approximately 86% of PS particles were isolated within the PEG phase whereas 78% of PMMA particles were isolated within the DEX phase. When a binary mixture of PS and PMMA was introduced within the device, ~83% of PS particles were isolated in the PEG phase and ~74% of PMMA particles were isolated in the DEX phase. These results confirm the feasibility of this technique for rapid and reliable separation of particles and potentially cells.  相似文献   

14.
A four-electrode impedance-based microfluidic device has been designed with tunable sensitivity for future applications to the detection of pathogens and functionalized microparticles specifically bound to molecular recognition molecules on the surface of a microfluidic channel. In order to achieve tunable sensitivity, hydrodynamic focusing was employed to confine the electric current by simultaneous introduction of two fluids (high- and low-conductivity solutions) into a microchannel at variable flow-rate ratios. By increasing the volumetric flow rate of the low-conductivity solution (sheath fluid) relative to the high-conductivity solution (sample fluid), increased focusing of the high-conductivity solution over four coplanar electrodes was achieved, thereby confining the current during impedance interrogation. The hydrodynamic and electrical properties of the device were analyzed for optimization and to resolve issues that would impact sensitivity and reproducibility in subsequent biosensor applications. These include variability in the relative flow rates of the sheath and sample fluids, changes in microchannel dimensions, and ionic concentration of the sample fluid. A comparative analysis of impedance measurements using four-electrode versus two-electrode configurations for impedance measurements also highlighted the advantages of using four electrodes for portable sensor applications.
A four-electrode sensor with hydrodynamic focusing to confine that the current was characterized for tunable sensitivity  相似文献   

15.
SC Lin  PW Yen  CC Peng  YC Tung 《Lab on a chip》2012,12(17):3135-3141
Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic flow cytometer developed in this paper provides a practical platform that can be used for routine analysis in biological laboratories. Additionally, the 3D hydrodynamic focusing channel design can also be applied to various applications that can advance the lab on a chip research.  相似文献   

16.
We demonstrate a method for generating flow within a microfluidic channel using an optically driven pump. The pump consists of two counter rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarised laser beam rotates the particles at up to 10 Hz. We show that the pump is able to displace fluid in microchannels, with flow rates of up to 200 microm(3) s(-1) (200 fL s(-1)). The direction of fluid pumping can be reversed by altering the sense of the rotation of the vaterite beads. We also incorporate a novel optical sensing method, based upon an additional probe particle, trapped within separate optical tweezers, enabling us to map the magnitude and direction of fluid flow within the channel. The techniques described in the paper have potential to be extended to drive an integrated lab-on-chip device, where pumping, flow measurement and optical sensing could all be achieved by structuring a single laser beam.  相似文献   

17.
Zheng Y  Shojaei-Baghini E  Azad A  Wang C  Sun Y 《Lab on a chip》2012,12(14):2560-2567
This paper reports a microfluidic system for biophysical characterization of red blood cells (RBCs) at a speed of 100-150 cells s(-1). Electrical impedance measurement is made when single RBCs flow through a constriction channel that is marginally smaller than RBCs' diameters. The multiple parameters quantified as mechanical and electrical signatures of each RBC include transit time, impedance amplitude ratio, and impedance phase increase. Histograms, compiled from 84,073 adult RBCs (from 5 adult blood samples) and 82,253 neonatal RBCs (from 5 newborn blood samples), reveal different biophysical properties across samples and between the adult and neonatal RBC populations. In comparison with previously reported microfluidic devices for single RBC biophysical measurement, this system has a higher throughput, higher signal to noise ratio, and the capability of performing multi-parameter measurements.  相似文献   

18.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

19.
The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.  相似文献   

20.
We describe a microfluidic cytometer that performs simultaneous optical and electrical characterisation of particles. The microfluidic chip measures side scattered light, signal extinction and fluorescence using integrated optical fibres coupled to photomultiplier tubes. The channel is 80 μm high and 200 μm wide, and made from SU-8 patterned and sandwiched between glass substrates. Particles were focused into the analysis region using 1-D hydrodynamic focusing and typical particle velocities were 0.1 ms(-1). Excitation light is coupled into the detection channel with an optical fibre and focused into the channel using an integrated compound air lens. The electrical impedance of particles is measured at 1 MHz using micro-electrodes fabricated on the channel top and bottom. This data is used to accurately size the particles. The system is characterised using a range of different sized polystyrene beads (fluorescent and non-fluorescent). Single and mixed populations of beads were measured and the data compared with a conventional flow cytometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号