首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
A simple and effective sample preparation process based on miniaturized matrix solid‐phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5‐dicaffeoylqunic acid, 1,5‐dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol‐3‐O‐rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5‐hydroxymethylfurfural) in Naoxintong capsule by ultra high‐performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products.  相似文献   

2.
In this study, graphene‐encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier‐transform infrared spectrometry, X‐ray diffraction and scanning electron microscopy. The graphene‐encapsulated silica subsequently was used as adsorbent for matrix solid‐phase dispersion extraction of poly‐methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly‐methoxylated flavonoids was established by coupling matrix solid‐phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection.  相似文献   

3.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

4.
A novel ionic‐liquid‐based vortex‐simplified matrix solid‐phase dispersion method using 2,6‐dimethyl‐β‐cyclodextrin was established by ultra high performance liquid chromatography coupled with a photodiode array detector. 2,6‐Dimethyl‐β‐cyclodextrin was first used as a promising adsorbent in this proposed method for simultaneous determination of eight compounds in Gardeniae fructus. These compounds are terpenoids (geniposidic acid, genipin‐1‐β‐D‐gentiobioside, geniposide, 8‐o‐acetyl shanzhiside methyl ester), crocins (crocin‐I, crocin‐II), quinic acid derivatives (chlorogenic acid), and flavonoids (isoquercitrin), respectively. Several parameters were investigated in the adsorption and desorption processes to obtain the optimal conditions, including 2,6‐dimethyl‐β‐cyclodextrin as sorbent, 0.5 mL 100 mM 1‐dodecyl‐3‐methylimidazolium hydrogen sulfate as the extraction solvent, 2:1 of sample/sorbent ratio, grinding for 2 min and vortexing for 60 s. The recoveries of the eight compounds ranged from 96.6 to 100% (<3.50%). The limits of detection and quantification were in the range of 0.02–0.30 and 0.06–1.25  μg/mL, respectively. Meanwhile, a good linearity was attained with r values (>0.9997). The established method showed higher extraction efficiency and less reagent consumption than traditional matrix solid phase dispersion and ultrasonic‐assisted extraction. Hence, it could be applied for sample preparation and analysis of natural products.  相似文献   

5.
A novel and simple method was established for the extraction and determination of seven compounds in Anemarrhena asphodeloides Bge. using silica gel‐based vortex‐homogenized matrix solid‐phase dispersion and ultra‐high performance liquid chromatography quadrupole‐time of‐flight mass spectrometer. The conditions for the extraction were optimized. Silica gel was used as the dispersant, 50% methanol–water was selected as an elution solvent and the grinding time was 3 min. Compared with the traditional ultrasonic‐assisted extraction, the developed method was rapid and efficient. In order to screen potential antioxidants, extract dealing with the optimized method was applied to a polyamide chromatography column and a D‐101 macroporous resin column. Fr.2.2 showed the highest antioxidant activities with the most content of flavonoid. A total of 25 peaks were identified from the active fraction. A 2,2′‐diphenyl‐1‐picrylhydrazyl ultra‐high performance liquid chromatography coupled with mass spectrometry approach was adopted for the rapid and exact screening and identification of antioxidant compounds. It indicated that flavonoids exhibited potential antioxidant activities. The antioxidant activities of nine monomeric compounds in vivo were tested. Structure–activity relationships were discussed. Five flavonoids with the concentration of 500 µg/mL would reduce the oxidative stress of PC12 cells that were induced with 2,2′‐azobis[2‐methylpropionamidine] dihydrochloride.  相似文献   

6.
A rapid, efficient, and green sample preparation method has been developed to extract eight active ingredients (gallic acid, catechins, epicatechin, polydatin, 2,3,5,4′‐tetrahydroxystilbene‐2‐O‐β‐d ‐glucoside, resveratrol, emodin, and physcion) in radix polygoni multiflori by miniaturized matrix solid‐phase dispersion microextraction. Simple and sensitive ultra high performance liquid chromatography combined with ultraviolet detection has been applied to analyze the multiple compounds. The best results were obtained by adding 25 mg sample into 25 mg adsorbent and grinding for 2 min with disorganized silica as adsorbent and 1 mL 150 mM 1‐dodecyl‐3‐methylimidazolium bromide as a green eluting solvent. Good linearity (r> 0.998) for each analyte was obtained by this method. The intra‐day and inter‐day precision (RSD) were both below 5.31%, and the recoveries of the analytes ranged from 93.3 to 100.0%. This simple miniaturized matrix solid‐phase dispersion microextraction method for analyzing the compounds in radix polygoni multiflori needs a short time and requires little sample and reagent. Thus, this method is far more eco‐friendly and efficient than traditional extraction methods (reflux and ultrasound‐assisted extraction). The present investigation provided a promising method for the fast preparation and discrimination of chemical differences in crude and processed radix polygoni multiflori.  相似文献   

7.
A method based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid‐phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid‐phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound‐assisted extraction, the proposed matrix solid‐phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices.  相似文献   

8.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

9.
An analytical protocol that includes solid‐phase purification and extraction is successfully developed for the determination of trace neonicotinoid pesticides in tea infusion. The method consists of a purification on amino‐functionalized mesoporous silica SBA‐15 followed by a solid‐phase extraction based on graphene oxide before ultra high performance liquid chromatography with tandem mass spectrometry analysis. Parameters that significantly affected the extraction of the neonicotinoids onto graphene oxide, such as the amount of adsorbent, extraction time, pH, elution solvent, etc. were optimized. The amino‐functionalized mesoporous silica SBA‐15 has been proved to be an efficient adsorbent for removal of polyphenols especially catechins from tea infusion. Graphene oxide exhibits a very rapid adsorption rate (within 10 min) and high adsorption capacities for neonicotinoids at low initial concentration (0.01–0.5 mg/L). The analysis method gave a good determination coefficient (r2 > 0.99) for each pesticide and high recoveries in the range of 72.2–95.0%. Powder X‐ray diffraction, Raman spectroscopy, transmission electron microscopy, and UV‐vis spectroscopy were utilized to identify the structure and morphology of graphene oxide. The adsorption driving force of neonicotinoids on graphene oxide mainly depends on π–π electron donor–acceptor interaction and electrostatic interaction.  相似文献   

10.
A simple and green sodium dodecyl sulfate‐synergistic microwave‐assisted extraction method was developed to extract and determine the iridoids, phenylpropanoids, and lignans in Eucommiae Cortex followed by ultra‐high‐performance liquid chromatography with photodiode array detection. The biodegradable solution (sodium dodecyl sulfate) was used as a promising alternative to organic solvents. The response surface methodology provided the optimum extraction conditions (2 mg/mL sodium dodecyl sulfate, 1100 W microwave power, and 6 min extraction time). The recoveries of three types of components ranged from 95.0 to 105% (RSDs < 5%). The intra‐ and inter‐day precision and accuracy were less than 3.40% and within the range of 97.1‐105%, respectively. Compared with other extraction methods, this newly established method was more efficient and environmental friendly. The results demonstrated that sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method was applicable for the simultaneous extraction and determination of these three types of compounds for quality evaluation of Eucommiae Cortex.  相似文献   

11.
An offline preparative two‐dimensional reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid‐phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula . First, the non‐flavonoids were removed using an XAmide solid‐phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first‐dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two‐dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula . Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials.  相似文献   

12.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

13.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

14.
We present a simple method for the fabrication of a magnetic amino‐functionalized zinc metal‐organic framework based on a magnetic graphene oxide composite. The resultant framework exhibited a porous 3D structure, high surface area and good adsorption properties for nitrogen‐containing heterocyclic fungicides. The adsorption process and capacity indicated that the primary adsorption mechanism might be hydrogen bonding and π‐π conjugation. In addition, an optimized protocol for magnetic solid phase extraction was developed (such as adsorbent content, pH, and desorption solvent), and utilized for the extraction of nitrogen‐containing heterocyclic fungicides from vegetable samples. Quantitation by high performance liquid chromatography coupled with tandem mass spectrometry offered a detection limit of 0.21–1.0 μg/L (S/N = 3) with correlation coefficients larger than 0.9975. These results demonstrate that magnetic amino‐functionalized zinc metal‐organic framewor is a promising adsorbent for the extraction and quantitation of nitrogen‐containing heterocyclic fungicides.  相似文献   

15.
Hydrosoluble trehalose lipid (a biosurfactant) was employed for the first time as a green extraction solution to extract the main antioxidant compounds (geniposidic acid, chlorogenic acid, caffeic acid, and rutin) from functional plant tea (Eucommia ulmoides leaves). Single‐factor tests and response surface methodology were employed to optimize the extraction conditions for ultrasound‐assisted micellar extraction combined with ultra‐high‐performance liquid chromatography in succession. A Box‐Behnken design (three‐level, three‐factorial) was used to determine the effects of extraction solvent concentration (1–5 mg/mL), extraction solvent volume (5–15 mL), and extraction time (20–40 min) at a uniform ultrasonic power and temperature. In consequence, the best analyte extraction yields could be attained when the trehalose lipid solution concentration was prepared at 3 mg/mL, the trehalose lipid solution volume was 10 mL and the extraction time was set to 35 min. In addition, the recoveries of the antioxidants from Eucommia ulmoides leaves analyzed by this analytical method ranged from 98.2 to 102%. These results indicated that biosurfactant‐enhanced ultrasound‐assisted micellar extraction coupled with a simple ultra‐high‐performance liquid chromatography method could be effectively applied in the extraction and analysis of antioxidants from Eucommia ulmoides leaf samples.  相似文献   

16.
Double‐templated molecularly imprinted polymers with specific recognition of three matrine‐type alkaloids were prepared using matrine and oxymatrine as the template molecules. An approach based on double‐templated molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and tandem mass spectrometry was then developed to extract and purify matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana in the Tibetan plateau herbs. The polymers were characterized by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Their adsorption characteristics were evaluated using adsorption kinetics, isotherms, selectivity, and recycling experiments. This polymer exhibited excellent molecular recognition ability and good selectivity. The obtained polymers as adsorbent was further used for the determination of three matrine‐type alkaloids coupled to high‐performance liquid chromatography with tandem mass spectrometry, the recoveries of three matrines spiked at three concentration levels in samples were 73.25–98.42% (n = 5) with a relative standard deviation less than 6.82%. The limits of detection for the method were 9.23–15.42 μg/kg (S/N = 3). This proposed method was assessed to be an effective method for simultaneous extraction, isolation, and identification of matrine, oxymatrine, and sophocarpine from Sophora moorcroftiana.  相似文献   

17.
As a result of the low water content and high fat matrices in nuts, it is very difficult to simultaneously determine multi‐pesticides in trace levels. Here, a sample pretreatment method was developed in which, microwave‐assisted solvent extraction was firstly used to extract pesticides, and then a two‐step cleanup method was conducted combining freeze‐out with dispersive solid‐phase extraction to remove the lipidic matrix. By this way, 106 pesticides were simultaneously determined in the complicated nut sample by using an ultra‐high pressure liquid chromatography coupled with a tandem mass spectrometer. Average recoveries were 75.3–119.3% with relative standard deviations < 14% at three concentration levels. The limits of detection and quantification were in the ranges of 0.3–3.0 and 1.0–10.0 μg/kg, respectively. Furthermore, the method was successfully applied to the determination of pesticides in 180 commercial nut samples.  相似文献   

18.
In this study, chitosan‐zinc oxide nanoparticles were used as a sorbent of miniaturized matrix solid‐phase dispersion combined with flotation‐assisted dispersive liquid–liquid microextraction for the simultaneous determination of 13 n‐alkanes such as C8H18 and C20H42 in soil samples. The solid samples were directly blended with the chitosan nanoparticles in the solid‐phase dispersion method. The eluent of solid‐phase dispersion was applied as the dispersive solvent for the following flotation‐assisted dispersive liquid–liquid microextraction for further purification and enrichment of the target compounds prior to gas chromatography with flame ionization detection. Under the optimum conditions, good linearity with correlation coefficients in the range 0.9991 < r2 < 0.9995 and low detection limits between 0.08 to 2.5 ng/g were achieved. The presented procedure combined the advantages of chitosan‐zinc oxide nanoparticles, solid‐phase dispersion and flotation‐assisted dispersive liquid–liquid microextraction, and could be applied for the determination of n‐alkanes in complicated soil samples with acceptable recoveries.  相似文献   

19.
A novel method for the sensitive and selective identification and quantification of N‐acylphosphatidylethanolamine molecular species was developed. Samples were prepared using a combination of liquid–liquid and solid‐phase extraction, and intact N‐acylphosphatidylethanolamine species were determined by reversed‐phase high‐performance liquid chromatography coupled to positive electrospray tandem mass spectrometry. As a result of their biological functions as precursors for N‐acylethanolamines and as signaling molecules, tissue concentrations of N‐acylphosphatidylethanolamines are very low, and their analysis is additionally hindered by the vast excess of other sample components. Our sample preparation methods are able to selectively separate the analytes of interest from any expected biological interferences. Finally, the highest selectivity is achieved by coupling chromatographic separation and two N‐acyl chain specific selected reaction monitoring scans per analyte, enabling identification of both the N‐acyl chain and the phosphatidylethanolamine moiety. The validated method is suitable for the reliable quantification of N‐acylphosphatidylethanolamine species from rat brain with a lower limit of quantification of 10 pmol/g and a linear range up to 2300 pmol/g. In total, 41 N‐acylphosphatidylethanolamine molecular species with six different N‐acyl chains, amounting to a total concentration of 3 nmol/g, were quantified.  相似文献   

20.
Ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was employed to extract and purify wedelolactone and isodemethylwedelolactone from Ecliptae Herba. The operating conditions of ultra‐high‐pressure extraction were optimized using an orthogonal experimental design. The optimal conditions were 80% aqueous methanol solvent, 200 MPa pressure, 3 min extraction time and 1:20 (g/mL) solid–liquid ratio for extraction of wedelolactone and isodemethylwedelolactone. After extraction by ultra‐high pressure, the extraction solution was concentrated and subsequently extracted with ethyl acetate; a total of 2.1 g of crude sample was obtained from 100 g of Ecliptae Herba. A two‐phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (3:7:5:5, v/v) was used for high‐speed counter‐current chromatography separation, by which 23.5 mg wedelolactone, 6.8 mg isodemethylwedelolactone and 5.5 mg luteolin with purities >95% were purified from 300 mg crude sample in a one‐step separation. This research demonstrated that ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was an efficient technique for the extraction and purification of coumestans from plant material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号