首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small‐molecule organic fluorophores, spectrally active in the 900–1700 nm region, with tunable wavelength and sensing properties are sought‐after for in vivo optical imaging and biosensing. A panel of fluorescent dyes ( CX ) has been developed to meet this challenge. CX dyes exhibit the wavelength tunability of cyanine dyes and have a rigidified polymethine chain to guarantee their stability. They are chemo‐ and photo‐stable in an aqueous environment and have tunable optical properties with maximal absorbing/emitting wavelength at 1089/1140 nm. They show great potential in high‐contrast in vivo bioimaging and multicolor detection with negligible optical cross talk. Förster resonance energy transfer (FRET) between CX dyes was demonstrated in deep tissue, providing an approach for monitoring drug‐induced hepatotoxicity by detection of OONO?. This report presents a series of NIR‐II dyes with promising spectroscopic properties for high‐contrast bioimaging and multiplexed biosensing.  相似文献   

2.
Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.  相似文献   

3.
Organic materials with long‐lived, color‐tunable phosphorescence are potentially useful for optical recording, anti‐counterfeiting, and bioimaging. Herein, we develop a series of novel host–guest organic phosphors allowing dynamic color tuning from the cyan (502 nm) to orange red (608 nm). Guest materials are employed to tune the phosphorescent color, while the host materials interact with the guest to activate the phosphorescence emission. These organic phosphors have an ultra‐long lifetime of 0.7 s and a maximum phosphorescence efficiency of 18.2 %. Although color‐tunable inks have already been developed using visible dyes, solution‐processed security inks that are temperature dependent and display time‐resolved printed images are unprecedented. This strategy can provide a crucial step towards the next‐generation of security technologies for information handling.  相似文献   

4.
In vivo optical imaging must contend with the limitations imposed by the optical window of tissue (600–1000 nm). Although a wide array of fluorophores are available that are visualized in the red and near‐IR region of the spectrum, with the exception of proteases, there are few long wavelength probes for enzymes. This situation poses a particular challenge for studying the intracellular biochemistry of erythrocytes, the high hemoglobin content of which optically obscures subcellular monitoring at wavelengths less than 600 nm. To address this, tunable fluorescent reporters for protein kinase activity were developed. The probing wavelength is preprogrammed by using readily available fluorophores, thereby enabling detection within the optical window of tissue, specifically in the far‐red and near‐IR region. These agents were used to monitor endogenous cAMP‐dependent protein kinase activity in erythrocyte lysates and in intact erythrocytes when using a light‐activatable reporter.  相似文献   

5.
Liu  Yongchao  Teng  Lili  Liu  Hong-Wen  Xu  Chengyan  Guo  Haowei  Yuan  Lin  Zhang  Xiao-Bing  Tan  Weihong 《中国科学:化学(英文版)》2019,62(10):1275-1285
Photoacoustic imaging(PAI) is a non-destructive biomedical imaging technology with broad application prospects. PAI combines the advantages of optical imaging and ultrasound imaging with high selectivity and deep penetration to overcome the high scattering limitation of light in tissues. This emerging technology also achieves high-resolution and high-contrast imaging of deep tissue in vivo. Recently, photoacoustic(PA) probes based on organic dyes have emerged prominently in biosensing and bioimaging due to their excellent optical properties and structural adaptability. This paper gives an outline of the basic PAI principles and focuses on the application of organic-dye-based PA probes for molecular detection and in vivo imaging. The advantages of PAI technology and the drawbacks of current PA probes are then summarized. Finally, the prospects for application are evaluated considering the potential challenges in the biomedical fields.  相似文献   

6.
Owing to their applications in biodetection and molecular bioimaging, near‐infrared (NIR) fluorescent dyes are being extensively investigated. Most of the existing NIR dyes exhibit poor quantum yield, which hinders their translation to preclinical and clinical settings. Plasmonic nanostructures are known to act as tiny antennae for efficiently focusing the electromagnetic field into nanoscale volumes. The fluorescence emission from NIR dyes can be enhanced by more than thousand times by precisely placing them in proximity to gold nanorods. We have employed polyelectrolyte multilayers fabricated using layer‐by‐layer assembly as dielectric spacers for precisely tuning the distance between gold nanorods and NIR dyes. The aspect ratio of the gold nanorods was tuned to match the longitudinal localized surface plasmon resonance wavelength with the absorption maximum of the NIR dye to maximize the plasmonically enhanced fluorescence. The design criteria derived from this study lays the groundwork for ultrabright fluorescence bullets for in vitro and in vivo molecular bioimaging.  相似文献   

7.
An unsymmetrical guanidine-cyclopropenimine proton sponge DAGUN and the related BF2-chelate DAGBO are reported. Insight into the structural, electronic, bonding and photophysical properties of these two molecules are presented. Joint experimental and theoretical studies reveal the protonated form of DAGUN possesses an intramolecular N⋅⋅⋅H−N hydrogen bond which affords a high experimental pKBH+ of 26.6 (computed=26.3). Photophysical studies show that in solution DAGUN displays a green emission at 534 nm, with a large Stokes shift of 235 nm (14,718 cm−1). In contrast, the conjugate acid DAGUN-H+ is only weakly emissive due to attenuated intramolecular charge transfer. X-ray diffraction studies reveal that DAGBO contains a stable tetracoordinate boronium cation, reminiscent of the well-established BODIPY family of dyes. In solution, DAGBO exhibits a strong blue emission at 450 nm coupled with a large Stokes shift (Δλ=158 nm, Δν=11,957 cm−1) and quantum yield of 62 %, upon excitation at 293 nm. DAGBO sets the stage as the first entry into a new class of boron-difluoride diaminonaphthalenes (BOFDANs) that represent highly fluorescent and tunable next-generation dyes with future promise for biosensing and bioimaging applications.  相似文献   

8.
In vivo fluorescence imaging in the second near‐infrared window (NIR‐II) affords deep‐tissue penetration and high spatial resolution. Herein, we present a new type of Tm3+‐sensitized lanthanide nanocrystals with both excitation (1208 nm) and emission (1525 nm) located in the NIR‐II window for in vivo optical information storage and decoding. Taking advantage of the tunable fluorescence lifetimes, the optical multiplexed encoding capacity is enhanced accordingly. Micro‐devices with QR codes featuring the NIR‐II fluorescence‐lifetime multiplexed encoding were implanted into mice and were successfully decoded through time‐gated fluorescence imaging technology.  相似文献   

9.
A series of water‐soluble red‐emitting distyryl‐borondipyrromethene (BODIPY) dyes were designed and synthesized by using three complementary approaches aimed at introducing water‐solubilizing groups on opposite faces of the fluorescent core to reduce or completely suppress self‐aggregation. An additional carboxylic acid functional group was introduced at the pseudo‐meso position of the BODIPY scaffold for conjugation to amine‐containing biomolecules/biopolymers. The optical properties of these dyes were evaluated under simulated physiological conditions (i.e., phosphate‐buffered saline (PBS), pH 7.5) or in pure water. The emission wavelength (λmax) of these labels was found in the 640–660 nm range with quantum yields from modest to unprecedentedly high values (4 to 38 %). The bioconjugation of these distyryl‐BODIPY dyes with bovine serum albumin (BSA) and the monoclonal antibody (mAb) 12A5 was successfully performed under mild aqueous conditions.  相似文献   

10.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   

11.
Fluorescence imaging in the near‐infrared (NIR) region (650–900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)‐mediated fluorescence quenching of silicon‐ and phosphorus‐substituted rhodamines (SiRs and PRs) in order to guide the development of improved far‐red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+, CaPR‐1 , and its membrane‐permeable acetoxymethyl derivative, CaPR‐1 AM , which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far‐red to NIR fluorescence probe based on the SiR scaffold, CaSiR‐1 AM , which is mainly localized in lysosomes as well as cytosol in living cells. CaPR‐1 showed longer‐wavelength absorption and emission (up to 712 nm) than CaSiR‐1 . The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.  相似文献   

12.
《化学:亚洲杂志》2017,12(16):2008-2028
T he use of nonfluorescent azo dyes as dark quenchers in activatable optical bioprobes based on the Förster resonance energy transfer (FRET) mechanism and designed to target a wide range of enzymes has been established for over two decades. The key value of the azo moiety (−N=N−) to act as an efficient “ON–OFF” switch of fluorescence once introduced within the core structure of conventional organic‐based fluorophores (mainly fluorescent aniline derivatives) has recently been exploited in the development of alternative reaction‐based small‐molecule probes based on the “profluorescence” concept. These unprecedented “azobenzene‐caged” fluorophores are valuable tools for the detection of a wide range of reactive (bio)analytes. This review highlights the most recent and relevant advances made in the design and biosensing/bioimaging applications of azo‐based fluorogenic probes. Emphasis is also placed on relevant achievements in the synthesis of bioconjugatable/biocompatible azo dyes used as starting building blocks in the rational and rapid construction of these fluorescent chemodosimeters. Finally, a brief glimpse of possible future biomedical applications (theranostics) of these “smart” azobenzene‐based molecular systems is presented.  相似文献   

13.
In vivo fluorescent monitoring of physiological processes with high‐fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation‐caused quenching (ACQ) and short‐wavelength fluorescence. The development of high‐performance and long‐wavelength aggregation‐induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline‐malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near‐infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale‐up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

14.
The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m ?1 cm?1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.  相似文献   

15.
Azo‐containing materials have been proven to possess second‐order nonlinear optical (NLO) properties, but their third‐order NLO properties, which involves two‐photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron‐donating DPAF moieties cause a redshifted π–π* absorption band centered at 470 nm, thus allowing efficient blue‐light‐induced trans‐to‐cis photoisomerization with a rate constant of 2.04×10?1 min?1 at the photostationary state (PSS). The open‐aperture Z‐scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross‐section for the fluorene‐derived azo chromophore than that for common azobenzene dyes at near‐infrared wavelength (λex=800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge‐transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.  相似文献   

16.
Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light‐harvesting capabilities for application as photosensitizers in dye‐sensitized solar cells (DSSCs). The absorption, electrochemical, time‐dependent density functional theory (TD‐DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)‐based sensitizers have been fully characterized. The optical and TD‐DFT studies show that the incorporation of a strongly electron‐donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO2 solar cells was investigated, and a power conversion efficiency as high as 1.57 % was achieved, with an open‐circuit voltage of 0.59 V, short‐circuit current density of 3.63 mA cm?2, and fill factor of 0.73 under simulated AM 1.5G solar illumination.  相似文献   

17.
A facile bottom‐up approach to carbon nanodots (CNDs) is reported, using a microwave‐assisted procedure under controlled conditions. The as‐prepared nitrogen‐doped CNDs (NCNDs) show narrow size‐distribution, abundant surface traps and functional groups, resulting in tunable fluorescent emission and excellent solubility in water. Moreover, we present a general method for the separation of NCNDs by low‐pressure size‐exclusion chromatography, leading to an even narrower size distribution, different surface composition, and optical properties. They display among the smallest size and the highest FLQYs reported so far. 13C‐enriched starting materials produced N13CNDs suitable for thorough NMR studies, which gave useful information on their molecular structure. Moreover, they can be easily functionalized and can be used as water‐soluble carriers. This work provides an avenue to size‐ and surface‐controllable and structurally defined NCNDs for applications in areas such as optoelectronics, biomedicine, and bioimaging.  相似文献   

18.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

19.
A facile bottom‐up approach to carbon nanodots (CNDs) is reported, using a microwave‐assisted procedure under controlled conditions. The as‐prepared nitrogen‐doped CNDs (NCNDs) show narrow size‐distribution, abundant surface traps and functional groups, resulting in tunable fluorescent emission and excellent solubility in water. Moreover, we present a general method for the separation of NCNDs by low‐pressure size‐exclusion chromatography, leading to an even narrower size distribution, different surface composition, and optical properties. They display among the smallest size and the highest FLQYs reported so far. 13C‐enriched starting materials produced N13CNDs suitable for thorough NMR studies, which gave useful information on their molecular structure. Moreover, they can be easily functionalized and can be used as water‐soluble carriers. This work provides an avenue to size‐ and surface‐controllable and structurally defined NCNDs for applications in areas such as optoelectronics, biomedicine, and bioimaging.  相似文献   

20.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号