首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Limited therapeutic efficiency and severe side effects in patients are two major issues existing in current chemotherapy of cancers in clinic. To design a proper theranostic platform seems thus quite needed to target cancer cells accurately by bioimaging and simultaneously release drugs on demand without premature leakage. A novel ZnO‐functionalized upconverting nanotheranostic platform has been fabricated for clear multi‐modality bioimaging (upconversion luminescence (UCL), computed tomography (CT), and magnetic resonance imaging (MRI)) and specific pH‐triggered on‐demand drug release. In our theranostic platform multi‐modality imaging provides much more detailed and exact information for cancer diagnosis than single‐modality imaging. In addition, ZnO can play the role of a “gatekeeper” to efficiently block the drug in the mesopores of the as‐prepared agents until it is dissolved in the acidic environment around tumors to realize sustained release of the drug. More importantly, the biodegradable ZnO, which is non‐toxic against normal tissues, endows the as‐prepared agents with high therapeutic effectiveness but very low side effects. These findings are of great interests and will inspire us much to develop novel effective imaging‐guided on‐demand chemotherapies in cancer treatment.  相似文献   

2.
Mitochondria‐targeting theranostic probes that enable the simultaneously reporting of and triggering of mitochondrial dysfunctions in cancer cells are highly attractive for cancer diagnosis and therapy. Three fluorescent mitochondria‐targeting theranostic probes have been developed by linking a mitochondrial dye, coumarin‐3‐carboximide, with a widely used traditional Chinese medicine, artemisinin, to kill cancer cells. Fluorescence images showed that the designed coumarin–artemisinin conjugates localized mainly in mitochondria, leading to enhanced anticancer activities over artemisinin. High cytotoxicity against cancer cells correlated with the strong ability to accumulate in mitochondria, which could efficiently increase the intracellular reactive oxygen species level and induce cell apoptosis. This study highlights the potential of using mitochondria‐targeting fluorophores to selectively trigger and directly visualize subcellular drug delivery in living cells.  相似文献   

3.
Affibody‐conjugated RALA (affi‐RA) are designed for delivering oligomeric 5‐fluorodeoxyuridine (FUdR, metabolite of 5‐FU) strand to raise the selectivity of 5‐fluorouracil (5‐FU), decrease its toxicity and improve its suboptimal therapeutic efficacy. The nanodrugs, FUdR@affi‐RA, are spontaneously assembled by electrostatic interaction between positively charged affi‐RA and negatively charged FUdR15‐strands (15 consecutive FUdR). FUdR@affi‐RA exhibits excellent stability under simulated physiological conditions. Compared with free FUdR, FUdR@affi‐RA shows excellent targeting and higher cytotoxicity in human epidermal growth factor receptor 2 (HER2) overexpressing gastric cancer N87 cells. Moreover, the anticancer mechanism studies reveal that FUdR@affi‐RA enhances the expression and activity of apoptosis‐associated proteins in the Bcl‐2/Bax‐caspase 8,9‐caspase 3 apoptotic pathway induced by FUdR. This study indicates that the fusion vector, affi‐RA, presents a promising delivery system platform for nucleoside analogue drugs and provides a new strategy for the development of therapeutics of cancer treatment.  相似文献   

4.
Herein is described a new modular platform for the construction of cancer‐cell‐targeting drug conjugates. Tripodal boronate complexes featuring reversible covalent bonds were designed to accommodate a cytotoxic drug (bortezomib), poly(ethylene glycol) (Peg) chains, and folate targeting units. The B‐complex core was assembled in one step, proved stable under biocompatible conditions, namely, in human plasma (half‐life up to 60 h), and underwent disassembly in the presence of glutathione (GSH). Stimulus‐responsive intracellular cargo delivery was confirmed by confocal fluorescence microscopy, and a mechanism for GSH‐induced B‐complex hydrolysis was proposed on the basis of mass spectrometry and DFT calculations. This platform enabled the modular construction of multivalent conjugates with high selectivity for folate‐positive MDA‐MB‐231 cancer cells and IC50 values in the nanomolar range.  相似文献   

5.
Nanomaterials that combine diagnostic and therapeutic functions within a single nanoplatform are highly desirable for molecular medicine. Herein we report a novel theranostic platform based on a conjugated‐polyelectrolyte (CPE) polyprodrug that contains functionality for image, chemo‐ and photodynamic therapy (PDT), and on‐demand drug release upon irradiation with a single light source. Specifically, the PEGylated CPE serves as a photosensitizer and a carrier, and is covalently conjugated to doxorubicin through a linker that can be cleaved by reactive oxygen species (ROS). Under appropriate light irradiation, the CPE can generate ROS, not only for PDT, but also for on‐demand drug release and chemotherapy. This nanoplatform will offer on‐demand PDT and chemotherapy with drug release triggered by one light switch, which has great potential in cancer treatment.  相似文献   

6.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

7.
8.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Arsenic trioxide (ATO, As2O3) is currently used to treat acute promyelocytic leukemia. However, expanding its use to include high‐dose treatment of other cancers is severely hampered by serious side effects on healthy organs. To address these limitations, we loaded ATO onto folate (FA)‐labeled human serum albumin (HSA) pretreated with glutathione (GSH) based on the low pH‐ and GSH‐sensitive arsenic‐sulfur bond, and we termed the resulting smart nanodrug as FA‐HSA‐ATO. FA‐HSA‐ATO could specifically recognize folate receptor‐β‐positive (FRβ+) chronic myeloid leukemia (CML) cells, resulting in more intracellular accumulation of ATO. Furthermore, the nanodrug could upregulate FRβ expression in CML cancer cells and xenograft tumor model, facilitating even more recruitment and uptake of FRβ‐targeting drugs. In vitro and in vivo experiments indicate that the nanodrug significantly alleviates side effects and improves therapeutic efficacy of ATO on CML and xenograft tumor model.  相似文献   

10.
Cancer‐cell‐specific pH‐activatable polymer nanogels consisting of CD44‐receptor‐targeting hyaluronic acid (HA), pH‐sensitive poly(β‐amino ester) (PBAE), and near‐infrared (NIR) fluorescent indocyanine green (ICG) were synthesized and used to detect cancer cells. The HA/PBAE/ICG‐polymer‐nanogel‐based NIR probe was nonfluorescent outside of tumor cells. After internalization by CD44‐receptor‐mediated endocytosis, the probe accumulated in the late endosomes or lysosomes where the acidic pH solubilized the PBAE and caused instant disassembly of the polymer nanogel. During endosomal maturation, the encapsulated ICG was released from its quenched state, inducing strong NIR fluorescence recovery. The nanogels generate a highly tumor‐specific NIR signal with a reduced background signal.  相似文献   

11.
Glutathione (GSH), the most abundant intracellular biothiol, protects cellular components from damage caused by free radicals and reactive oxygen species (ROS), and plays a crucial role in human pathologies. A fluorescent probe that can selectively sense intracellular GSH would be very valuable for understanding of its biological functions and mechanisms of diseases. In this work, a 3,4‐dimethoxythiophenol‐substituted coumarin‐enone was exploited as a reaction‐type fluorescent probe for GSH based on a chloro‐functionalized coumarin‐enone platform. In the probe, the 3,4‐dimethoxythiophenol group functions not only as a fluorescence quencher through photoinduced electron transfer (PET) to ensure a low background fluorescence, but also as a reactive site for biothiols. The probe displays a dramatic fluorescence turn‐on response toward GSH with the long‐wavelength emission (600 nm) and significant Stokes shift (100 nm). The selectivity of the probe toward GSH over cysteine (Cys), homocysteine (Hcy), and other amino acids was demonstrated. Assisted by laser‐scanning confocal microscopy, we have demonstrated that the probe could specifically sense GSH over Cys/Hcy in human renal cell carcinoma SiHa cells.  相似文献   

12.
Protein kinase plays a vital role in regulating signal‐transduction pathways and its simple and quick detection is highly desirable because traditional kinase assays typically rely on a time‐consuming kinase‐phosphorylation process (ca. 1 h). Herein, we report a new and rapid fluorescence‐based sensing platform for probing the activity of protein kinase that is based on the super‐quenching capacity of graphene oxide (GO) nanosheets and specific recognition of the aptameric peptide (FITC‐IP20). On the GO/peptide platform, the fluorescence quenching of FITC‐IP20 that is adsorbed onto GO can be restored by selective binding of active protein kinase to the aptameric peptide, thereby resulting in the fast switch‐on detection of kinase activity (ca. 15 min). The feasibility of this method has been demonstrated by the sensitive measurement of the activity of cAMP‐dependent protein kinase (PKA), with a detection limit of 0.053 mU μL?1. This assay technique was also successfully applied to the detection of kinase activation in cell lysate.  相似文献   

13.
A label‐free approach with multiple enhancement of the signal for microRNA detection has been introduced. The key idea of this strategy is achieved by taking advantage of a novel graphene oxide (GO)/intercalating dye based fluorescent hairpin probe (HP) and an isothermal polymerization reaction. In this paper, we used microRNA‐21 (mir‐21) as the target to examine the desirable properties of this assay. When the target, as a “trigger”, was hybridized with the HP and caused a conformation change, an efficient isothermal polymerization reaction was activated to achieve the first step of the “signal” amplification. After incubation with the platform of GO/intercalating dye, the formed complex of DNA interacted with the high‐affinity dye and then detached from the surface of the GO, a process that was accompanied by distinguishable fluorescence recovery. Further signal enhancement has been accomplished by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. Due to the efficient and multiple amplification steps, this approach exerted a substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir‐21 at attomole levels. Proof‐of‐concept evidence has been provided for the proposed cost‐effective strategy; thus, this strategy could expand the application of GO‐material‐based bioanalysis for nucleic acid studies.  相似文献   

14.
This work describes a novel strategy for the highly sensitive and selective detection of cysteine (Cys) and glutathione (GSH) based on the Hg2+–AGRO100–malachite green (MG) complex system. The dye MG, which has a very low quantum yield in aqueous solution by itself, can bind with the thymine‐rich DNA AGRO100 in the presence of Hg2+ ions to generate a striking fluorescence intensity enhancement of 1000‐fold. As sulfur‐containing amino acids, Cys and GSH effectively sequester Hg2+ ions from the Hg2+–AGRO100–MG complex structure to switch the ‘lit‐up’ chemosensor to the ‘off’ state (about a 50‐fold fluorescence intensity decrease), thus providing a facile, but effective, method to probe for Cys/GSH. The fluorescence titration, UV absorption, CD, and Raman spectra provide some insight into the structural and chemical basis for the enhancement effect. The formation of the Hg2+–AGRO100–MG complex significantly affects the electronic structure and conformation of the MG molecule by leading to an extended π system, which is the likely origin of the observed striking fluorescence intensity enhancement. Notably, the proposed sensing platform exhibits exquisite selectivity and sensitivity toward Cys/GSH with limits of detection of 5 nM for Cys and 10 nM for GSH, respectively. Furthermore, the straightforward assay design avoids labeling of the probe, uses only commercially available materials, and still displays comparable sensitivity and excellent selectivity.  相似文献   

15.
DNAzymes have been recognized as potent therapeutic agents for gene therapy, while their inefficient intracellular delivery and insufficient cofactor supply precludes their practical biological applications. Metal–organic frameworks (MOFs) have emerged as promising drug carriers without in‐depth consideration of their disassembled ingredients. Herein, we report a self‐sufficient MOF‐based chlorin e6‐modified DNAzyme (Ce6‐DNAzyme) therapeutic nanosystem for combined gene therapy and photodynamic therapy (PDT). The ZIF‐8 nanoparticles (NPs) could efficiently deliver the therapeutic DNAzyme without degradation into cancer cells. The pH‐responsive ZIF‐8 NPs disassemble with the concomitant release of the guest DNAzyme payloads and the host Zn2+ ions that serve, respectively, as messenger RNA‐targeting agent and required DNAzyme cofactors for activating gene therapy. The auxiliary photosensitizer Ce6 could produce reactive oxygen species (ROS) and provide a fluorescence signal for the imaging‐guided gene therapy/PDT.  相似文献   

16.
Gold nanorod‐attached PEGylated graphene‐oxide (AuNR‐PEG‐GO) nanocomposites were tested for a photothermal platform both in vitro and in vivo. Cytotoxicity of AuNR was reduced after encapsulation with PEG‐GO along with the removal of cetyltrimethylammonium bromide (CTAB) from AuNR by HCl treatment. Cellular internalization of the CTAB‐eliminated AuNR‐PEG‐GO nanocomposites was examined using dark‐field microscopy (DFM), confocal Raman microscopy and transmission electron microscopy (TEM). To determine the photothermal effect of the AuNR‐PEG‐GO nanocomposites, A431 epidermoid carcinoma cells were irradiated with Xe‐lamp light (60 W cm?2) for 5 min after treatment with the AuNR‐PEG‐GO nanocomposites for 24 h. Cell viability significantly decreased by ~40% when the AuNR‐PEG‐GO‐encapsulated nanocomposites were irradiated with light as compared with the cells treated with only the AuNR‐PEG‐GO nanocomposites without any illumination. In vivo tumor experiments also indicated that HCl‐treated AuNR‐PEG‐GO nanocomposites might efficiently reduce tumor volumes via photothermal processes. Our graphene and AuNR nanocomposites will be useful for an effective photothermal therapy.  相似文献   

17.
Theranostic hyaluronic acid (HA) prodrug micelles with pH-responsive drug release and aggregation-induced emission (AIE) properties were prepared by chemical graft of biomimetic phosphorylcholine (PC), anticancer drug doxorubicin (DOX) and AIE fluorogen tetraphenylene (TPE) to the HA backbone. DOX was conjugated to the HA backbone by a hydrazone bond which can be hydrolyzed under acidic environment and result in pH-triggered smart release of DOX. The TPE units with typical AIE characteristics were applied for real time drug tracking in cancer cells. The HA-based prodrugs could self-assemble into micelles in aqueous solution as confirmed by the dynamic light scattering (DLS) and transmission electron microscopy (TEM). The intracellular distribution of HA prodrug micelles could be clearly observed by fluorescence microscopy based on the strong fluorescence of TPE. Moreover, after treated with the micelles, stronger fluorescence of TPE in CD44 overexpressed MDA-MB-231 cancer cells was observed, compared to the CD44 negative cell line, NIH3T3 cells, suggesting efficient cell uptake of HA prodrug micelles by receptor-mediated endocytosis. The cell viability results indicated that the prodrug micelles could inhibit the proliferation of the cancer cells effectively. Such pH-triggered theranostic drug delivery system with AIE features can provide a new platform for targeted and image-guided cancer therapy.  相似文献   

18.
Risedronate‐anchored hydroxyapatite (HA‐RIS) nanocrystals were prepared with 4.1 wt % RIS and used for controlled surface‐initiated ring‐opening polymerization (ROP) of L ‐lactide (L ‐LA). The strong adsorption of RIS to HA surface not only led to enhanced dispersion of HA nanocrystals in water as well as in organic solvents but also provided alkanol groups as active initiating species for ROP of L ‐LA. HA‐RIS was characterized by thermogravimetric analysis, dynamic light scattering, 1H NMR, Fourier transform infrared spectrometer, and X‐ray diffraction. The graft polymerization of L ‐LA onto HA‐RIS took place smoothly in the presence of stannous octoate in toluene at 120 °C, resulting in HA/poly(L ‐LA) nanocomposites with high yields of 85–90% and high poly(L ‐LA) contents of up to 97.5 wt %. Notably, differential scanning calorimetry measurements revealed that the poly(L ‐LA) in HA/poly(L ‐LA) nanocomposites exhibited considerably higher melting temperatures (Tm = 173.3?178.1 °C) and higher degrees of crystallinity (Xc = 41.0?43.1%) as compared to poly(L ‐LA) homopolymer (Tm = 168.5 °C, Xc =25.7%). In addition, our initial results showed that these HA/poly(L ‐LA) nanocomposites could readily be electrospun into porous matrices. This study presented a novel and controlled synthetic strategy to HA/RIS/poly(L ‐LA) nanocomposites that are promising for orthopedic applications as well as for bone tissue engineering. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.

  相似文献   


20.
γ‐Glutamyltranspeptidase (GGT) is a tumor biomarker that selectively catalyzes the cleavage of glutamate overexpressed on the plasma membrane of tumor cells. Here, we developed two novel fluorescent in situ targeting (FIST) probes that specifically target GGT in tumor cells, which comprise 1) a GGT‐specific substrate unit (GSH), and 2) a boron–dipyrromethene (BODIPY) moiety for fluorescent signalling. In the presence of GGT, sulfur‐substituted BODIPY was converted to amino‐substituted BODIPY, resulting in dramatic fluorescence variations. By exploiting this enzyme‐triggered photophysical property, we employed these FIST probes to monitor the GGT activity in living cells, which showed remarkable differentiation between ovarian cancer cells and normal cells. These probes represent two first‐generation chemodosimeters featuring enzyme‐mediated rapid, irreversible aromatic hydrocarbon transfer between the sulfur and nitrogen atoms accompanied by switching of photophysical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号