首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

2.
The design and preparation of metal‐free organic materials that exhibit room‐temperature phosphorescence (RTP) is a very attractive topic owing to potential applications in organic optoelectronic devices. Herein, we present a facile approach to efficient and long‐lived organic RTP involving the doping of N‐phenylnaphthalen‐2‐amine (PNA) or its derivatives into a crystalline 4,4′‐dibromobiphenyl (DBBP) matrix. The resulting materials showed strong and persistent RTP emission with a quantum efficiency of approximately 20 % and a lifetime of a few to more than 100 milliseconds. Bright white dual emission containing blue fluorescence and yellowish‐green RTP from the PNA‐doped DBBP crystals was also confirmed by Commission Internationale de l'Eclairage (CIE) coordinates of (x=0.29–0.31, y=0.38–0.41).  相似文献   

3.
Purely organic materials with room‐temperature phosphorescence (RTP) are currently under intense investigation because of their potential applications in sensing, imaging, and displaying. Inspired by certain organometallic systems, where ligand‐localized phosphorescence (3π‐π*) is mediated by ligand‐to‐metal or metal‐to‐ligand charge transfer (CT) states, we now show that donor‐to‐acceptor CT states from the same organic molecule can also mediate π‐localized RTP. In the model system of N‐substituted naphthalimides (NNIs), the relatively large energy gap between the NNI‐localized 1π‐π* and 3π‐π* states of the aromatic ring can be bridged by intramolecular CT states when the NNI is chemically modified with an electron donor. These NNI‐based RTP materials can be easily conjugated to both synthetic and natural macromolecules, which can be used for RTP microscopy.  相似文献   

4.
Soft luminescent materials are attractive for optoelectronic applications, however, switching dominant chromophores for property enrichment remains a challenge. Herein, we report the first case of a soft organic molecule (DOS) featuring selective expression of chromophores. In response to various external stimuli, different chromophores of DOS can take turns working through conformation changes, exhibiting full‐colour emissions peaking from 469 nm to 583 nm from ten individual single crystals. Dynamic triplet‐exciton behaviours including thermally activated delayed fluorescence (TADF), room‐temperature phosphorescence (RTP), mechanoluminescence (ML), and distinct mechano‐responsive luminescence (MRL) can all be realized. This novel designed DOS molecule provides a multifunctional platform for detection of volatile organic compounds (VOCs), multicolour dynamic displays, sensing, anticounterfeiting, and hopefully many others.  相似文献   

5.
Pure organic luminogens with persistent room‐temperature phosphorescence (p‐RTP) have attracted increasing attention owing to their vital significance and potential applications in security inks, bioimaging, and photodynamic therapy. Previously reported p‐RTP luminogens normally possessed through‐bond conjugation. In this work, we report a pure organic luminogen, AN‐MA, the Diels–Alder cycloaddition adduct of anthracene (AN) and maleic anhydride (MA), which possesses isolated phenyl groups and an anhydride moiety. AN‐MA exhibits aggregation‐enhanced emission (AEE) characteristics with efficiency of approximately 2 % and up to 8.5 % in solution and crystals, respectively. Two polymorphs of AN‐MA were readily obtained that were able to generate UV emission from individual phenyl rings together with bright blue emission owing to the effective through‐space conjugation. Moreover, p‐RTP with a lifetime of up to approximately 1.6 s was obtained in the crystals. These results not only reveal a new system with both fluorescence and RTP dual emission but also suggest an alternative through‐space conjugation strategy towards pure organic p‐RTP luminogens with tunable emissions.  相似文献   

6.
The performance of solid luminogens depends on both their inherent electronic properties and their packing status. Intermolecular interactions have been exploited to achieve persistent room‐temperature phosphorescence (RTP) from organic molecules. However, the design of organic materials with bright RTP and the rationalization of the role of interchromophoric electronic coupling remain challenging tasks. Cyclic triimidazole has been shown to be a promising scaffold for such purposes owing to its crystallization‐induced room‐temperature ultralong phosphorescence (RTUP), which has been associated with H‐aggregation. Herein, we report three triimidazole derivatives as significant examples of multifaceted emission. In particular, dual fluorescence, RTUP, and phosphorescence from the molecular and supramolecular units were observed. H‐aggregation is responsible for the red RTUP, and Br substituents favor yellow molecular phosphorescence while halogen‐bonded Br⋅⋅⋅Br tetrameric units are involved in the blue‐green phosphorescence.  相似文献   

7.
Pure organic materials exhibiting room temperature phosphorescence (RTP) have significant fundamental importance and promising optoelectronic and biological applications. Exploration of metal- and heavy atom-free pure organic phosphors, however, remains challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss is difficult without metal or heavy atoms. In this contribution, in contrast to aggregation-caused quenching (ACQ) normally observed in conventional chromophores, a unique phenomenon of crystallization-induced dual emission (CIDE), namely, simultaneously boosted fluorescence and phosphorescence upon crystallization, is observed in a group of pure organic aromatic acids and esters at ambient conditions. Moreover, two triplet-involved relaxations of delayed fluorescence (DF) and phosphorescence are activated. Such efficient intrinsic emission from both singlet and triplet states in a single compound without employing metal or heavy atoms is suitable for a variety of fundamental research and applications.  相似文献   

8.
Persistent room‐temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red‐emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br−H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water‐dispersity for biomedical applications.  相似文献   

9.
An organic crystal of 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (pCBP) exhibits time‐dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well‐separated, long‐persistent thermally activated delayed fluorescence (TADF) and room‐temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol?1. The good separation of TADF and RTP is due to a 11.8 kcal mol?1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited‐state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

10.
As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two‐coordinate CuI‐N‐heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room‐temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two‐coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.  相似文献   

11.
An unconventional organic molecule (TBBU) showing obvious long‐lived room temperature phosphorescence (RTP) is reported. X‐ray single crystal analysis demonstrates that TBBU molecules are packed in a unique fashion with side‐by‐side arranged intermolecular aromatic rings, which is entirely different from the RTP molecules reported to date. Theoretical calculations verify that the extraordinary intermolecular interaction between neighboring molecules plays an important role in RTP of TBBU crystals. More importantly, the polymer film doped with TBBU inherits its distinctive RTP property, which is highly sensitive to oxygen. The color of the doped film changes and its RTP lifetime drops abruptly through a dynamic collisional quenching mechanism with increasing oxygen fraction, enabling visual and quantitative detection of oxygen. Through analyzing the grayscale of the phosphorescence images, a facile method is developed for rapid, visual, and quantitative detection of oxygen in the air.  相似文献   

12.
Pure organic materials with intrinsic room‐temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room‐temperature phosphorescence (RTP) species based upon the through‐space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP‐BrCz and PPCP‐BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non‐halogen‐containing electron‐withdrawing units, PCP‐TNTCz and PCP‐PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP‐TNTCz and PCP‐PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as ?1.2×10?2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP‐TNTCz enantiomers in crystalline state.  相似文献   

13.
The stability of pure organic room‐temperature phosphorescent (RTP) materials in air has been a research hotspot in recent years. Without crystallization or encapsulation, a new strategy was proposed to obtain self‐stabilized organic RTP materials, based on a complete ionization of a photo‐induced charge separation system. The ionization of aromatic phenol 4‐carbazolyl salicylaldehyde (CSA) formed a stable H‐bonding anion–cation radical structure and led to the completely amorphous CSA‐I film. Phosphorescent lifetimes as long as 0.14 s at room temperature and with direct exposure to air were observed. The emission intensity was also increased by 21.5‐fold. Such an amorphous RTP material reconciled the contradiction between phosphorescence stability and vapor permeability and has been successfully utilized for peroxide vapor detection.  相似文献   

14.
Herein we report a rational design strategy for tailoring intermolecular interactions to enhance room‐temperature phosphorescence from purely organic materials in amorphous matrices at ambient conditions. The built‐in strong halogen and hydrogen bonding between the newly developed phosphor G1 and the poly(vinyl alcohol) (PVA) matrix efficiently suppresses vibrational dissipation and thus enables bright room‐temperature phosphorescence (RTP) with quantum yields reaching 24 %. Furthermore, we found that modulation of the strength of halogen and hydrogen bonding in the G1–PVA system by water molecules produced unique reversible phosphorescence‐to‐fluorescence switching behavior. This unique system can be utilized as a ratiometric water sensor.  相似文献   

15.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.  相似文献   

16.
Meso‐tetra (carbonyl phenyl) porphyrin palladium (denoted as Pd‐TCPP), a typical organometallic compound, was used as phosphor and entrapped in micelle‐hybridized supramolecular hydrogels. As a novel matrix material of phosphors, the hybrid system was comprised of two ordered structures: a supramolecular 3D network structure formed by the self‐assembly of the gelator and the micelles formed from a Gemini surfactant. The dual‐ordered structure of the system was verified by SEM, TEM and fluorescent optical microscopy. By contrast with corresponding mono‐ordered structure, the room temperature phosphorescence (RTP) of Pd‐TCPP was greatly enhanced by the dual‐ordered structure of the system. The enhancement mechanism of RTP was studied by hydrophobicity of the system, RTP quenching and disassembly of supramolecular aggregates. Enhanced RTP could be attributed to the efficient inhibition of the non‐radiative transition of Pd‐TCPP by dual‐ordered structures. Significantly, the RTP intensity of Pd‐TCPP can be adjusted by changing the concentration of Gemini surfactants. Furthermore, deoxygenation was not required in this hybrid system in comparison with corresponding mono‐component systems.  相似文献   

17.
Efficient emission of purely organic room‐temperature phosphorescence (RTP) is of great significant for potential application in optoelectronics and photobiology. Herein, we report an uncommon phosphorescent effect of organic single molecule enhanced by resulting supramolecular assembly of host–guest complexation. The chromophore bromophenyl‐methyl‐pyridinium (PY) with different counterions as guests display various phosphorescence quantum yields from 0.4 % to 24.1 %. Single crystal X‐ray diffraction results indicate that the chromophore with iodide counterion (PYI) exhibits the highest efficiency maybe due to the halogen‐bond interactions. Significantly, the nanosupramolecular assembly of PY chloride complexation with the cucurbit[6]uril gives a greatly enhanced phosphorescent quantum yield up to 81.2 % in ambient. Such great enhancement is because of the strict encapsulation of cucurbit[6]uril, which prevents the nonradiative relaxation and promotes intersystem crossing (ISC). This supramolecular assembly concept with counterions effect provides a novel approach for the improvement of RTP.  相似文献   

18.
Pure organic materials with ultralong room‐temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, they generally show inefficient intersystem crossing (ISC) owing to weak spin–orbit coupling (SOC). A design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism was used to obtain efficient and ultralong RTP materials. The meta isomer of carbazole‐substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1 %. Study of the structure–property relationship shows that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1.  相似文献   

19.
Twisted pure organic luminogens based on benzophenone and aromatic amines exhibit both fluorescence and phosphorescence in crystals, while owning merely red-shifted fluorescence at ground amorphous solids. Some of them even demonstrate greatly enhanced emission upon grinding.  相似文献   

20.
Solid‐state materials with efficient room‐temperature phosphorescence (RTP) emissions have found widespread applications in materials science, while liquid or solution‐phase pure organic RTP emission systems has been rarely reported, because of the nonradiative decay and quenchers from the liquid medium. Reported here is the first example of visible‐light‐excited pure organic RTP in aqueous solution by using a supramolecular host‐guest assembly strategy. The unique cucurbit[8]uril‐mediated quaternary stacking structure allows tunable photoluminescence and visible‐light excitation, enabling the fabrication of multicolor hydrogels and cell imaging. The present assembly‐induced emission approach, as a proof of concept, contributes to the construction of novel metal‐free RTP systems with tunable photoluminescence in aqueous solution, providing broad opportunities for further applications in biological imaging, detection, optical sensors, and so forth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号