首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This work presents a sensitive voltammetric method for determination of curcumin by using a electrochemically reduced graphene oxide (ERGO) modified glass carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The electrochemical behaviors of curcumin at ERGO/GCE were investigated by cyclic voltammetry, suggesting that the ERGO/GCE exhibits excellent electrocatalytic activity towards curcumin, compared with bare GCE and GO/GCE electrodes. The electrochemical reaction mechanisms of curcumin, demethoxycurcumin and bisdemethoxycurcumin at the ERGO/GCE were also investigated and discussed systematically. Under physiological condition, the modified electrode showed linear voltammetric response from 0.2 μM to 60.0 μM for curcumin, with the detection limit of 0.1 μm. This work demonstrates that the graphene‐modified electrode is a promising strategy for electrochemical determination of biological important phenolic compounds.  相似文献   

2.
This study presents a new electrochemical sensor (NiO−ERGO/SPE) for sensitive and selective detection of epinephrine (EPI) on the screen-printed electrode (SPE) which is modified with a nanocomposite film consisting of electrochemically reduced graphene oxide and NiO nanoparticles. After surface functionalization, structural and electrochemical characterization of NiO−ERGO film, DPV signals of NiO−ERGO/SPE towards the oxidation of EPI exhibited a linear correlation in the concentration range of 0.025 μM to 175 μM with a detection limit of 0.015 μM, which reveals NiO−ERGO film is manifested a good electrocatalytic activity for EPI detection compared with the previous reports. The selectivity of NiO−ERGO film was also tested on a very wide scale of possible interferents (ascorbic acid, uric acid, dopamine, lactic acid, phenylalanine, tyrosine, tryptophan, Li+, Na+, K+, Ca2+, and Zn2+). Moreover, to evaluate the applicability of the proposed sensor for real sample analysis, NiO−ERGO/SPE was successfully utilized for the determination of EPI in pharmaceutical samples.  相似文献   

3.
This work presents a sensitive voltammetric method for determination of folic acid by adsorbing methylene blue onto electrodeposited reduced graphene oxide film modified glassy carbon electrode (MB/ERGO/GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology of the MB/ERGO/GCE modified electrode was characterized using scanning electron microscopy, displays that both MB and ERGO distributed homogeneously on the surface of GCE. The MB/ERGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE, MB/GCE, and ERGO/GCE. The electrochemical behaviors of folic acid at MB/ERGO/GCE were investigated by cyclic voltammetry, suggesting that the modified electrode exhibited excellent electrocatalytic activity towards folic acid compared with other electrodes. Under physiological condition, the MB/ERGO/GCE modified electrode showed a linear voltammetric response from 4.0 μM to 167 μM for folic acid, and with the detection limit of 0.5 μM (S/N=3). The stability, reproducibility and anti‐interference ability of the modified electrode were examined. The developed method has been successfully applied to determination of FA in tablets with a satisfactory recovery from 96 % to 100 %. The work demonstrated that the electroactive MB adsorbing onto graphene modified electrode showed an enhanced electron transfer property and a high resolution capacity to FA.  相似文献   

4.
In this work, the nanosheet‐assembled lindgrenite microflowers (chemical formula: Cu3Mo2O9) were synthesised through a simple process and low‐cost raw materials at room temperature in aqueous solution without using any surface‐active agent. The tightly interlaced nanosheets, like petals, can increase the specific surface area, which can bring about higher electrocatalytic activity and electroanalysis sensitivity. Thus, lindgrenite microflowers were prepared as an electrochemical sensor and successfully applied in the detection of paracetamol through the modified glass carbon electrode. Furthermore, this electrochemical reaction process was simulated at the ab‐initio level to reveal the catalytic mechanism, and the simulation results agreed well with electrochemical experiments. The electrochemical performance of the lindgrenite microflowers modified glassy carbon electrode (GCE) was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The linearity of paracetamol ranged from 0.05 to 1200 μM (IT method) and 0.05 to 1000 μM (DPV method), low detection limit (0.01 μM) and high sensitivity (5.11 mA mM?1 cm?2) towards paracetamol. Moreover, this sensor was applied to detect paracetamol in human blood serum samples. The excellent results demonstrated that the prepared electrode not only showed a desirable linear range towards paracetamol but also exhibited practical applicability and reliability towards human serum samples detection.  相似文献   

5.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

6.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

7.
A two‐dimensional π‐conjugated metal‐organic framework (MOF) with long‐range delocalized electrons has been prepared and applied as modified electrode material without further post‐modification. The MOF (Cu3(HHTP)2) is composed of Cu(II) centers and a redox‐active linker (2,3,6,7,10,11‐hexahydroxytriphenylene, HHTP). Compared to most MOFs, Cu3(HHTP)2 displays higher electrical conductivity and charge storage capacity owing to the collective effect of metal ions and aromatic ligands with π–π conjugation. In order to confirm the superior properties of this material, the electrochemical detection of dopamine (DA) was conducted and the satisfactory results were obtained. The currents increase linearly with the concentration of DA in the range 5.0 × 10?8 to 2.0 × 10?4 M with a detection limit of 5.1 nM. Furthermore, Cu3(HHTP)2 presents high selectivity and applicability in serum samples for electrochemical DA sensing. Overall, this material has excellent potential as a promising platform for establishing an MOF‐based electrochemical sensor.  相似文献   

8.
An electrochemical sensor based on poly-ethionine (Poly-ET) film modified glassy carbon electrode was developed for sensitive and simultaneous sensing of dopamine (DA) and paracetamol (PA). The electropolymerization of ethionine monomer was carried out to modify the electrode. The modified electrode was characterized by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The Poly-ET/GCE exhibited excellent electrocatalysis towards the sensing of DA and PA. Poly-ET/GCE showed a linear increase of current response with increase concentration of DA and PA ranging from 0.1 μM–60 μM and 0.1 μM–180 μM, respectively. The LODs were found to be 7 nM and 18 nM (S/N=3) for DA and PA, respectively. This electrochemical sensor was successfully utilized for the detection of DA and PA in pharmaceutical samples.  相似文献   

9.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

10.
In this study, electrochemically reduced graphene oxide (ERGO) was used for the preparation of a screen‐printed modified electrode and applied for the voltammetric determination of fenamiphos (FNP) in tomato samples. Graphene oxide (GO) used for sensor construction was prepared according to an improved Hummers method and characterized by XRD, TEM, and FTIR, which confirmed the nanomaterial obtention. The ERGO formation was carried out from the electrodeposition by cyclic voltammetry, at 50 mV s?1 in the potential range of 0.0 to ?1.5 V, during 50 cycles. ERGO‐SPE was used in the evaluation of the voltammetric behavior of FNP. The ERGO‐SPE proposed presented excellent electrochemical performance towards FNP oxidation, promoting an enhance on the anodic peak current and a decrease of peak potential. Under optimized conditions, it was possible to construct an analytical curve, using square wave voltammetry, with a linear region of 0.25 to 25.0 μM, with calculated limits of detection and quantification of 0.067 and 0.22 μM. From this, it was possible to analyze FNP in fortified tomato samples at three concentration levels, which showed recoveries values varying between 82 and 102 %. The ERGO‐SPE device proved useful in determining FNP, where the effect of the electrodeposition of the GO promoted a significant increase in the employability of the printed electrode.  相似文献   

11.
Superoxide anion, one of the most active reactive oxygen species, is associated with the development of many diseases. So monitoring superoxide anion in living cells is of great significance for the pathological research of many diseases. In this work, a new non-enzymatic sensor for the detection of superoxide anion(O2·-) was developed, which was fabricated by the nanocomposites composed of manganese(III) tetraphenyl porphine(MnTPP) as super-oxide dismutase mimic and electrochemical reduced graphene oxide(ERGO) as electrode support material to modify the glassy carbon electrode(GCE). The electrochemical behavior of the fabricated electrode(MnTPP/ERGO/GCE) was performed by electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV), which revealed that MnTPP/ERGO/GCE possessed good catalytic ability to the electrochemical reduction of O2·-. The MnTPP/ERGO/GCE showed excellent electroanalysis performance towards O2·- using the technique of differential pulse voltammetry(DPV) with a linear relationship in the range of 0.2-110.0 μmol/L, a sensitivity of 445 μA·L·mmol-1·cm-2 and a detection limit of 0.039 μmol/L(S/N=3). The real-time monitoring of O2·- from MCF-7 breast cancer cells stimulated by zymosan was realized in this work, which indicates that the MnTPP/ERGO/GCE hold potential application for electrochemical quantification of superoxide anions in biological applications.  相似文献   

12.
A novel electrochemical sensor based on nickel-doped cobalt ferrite nanoparticles (Ni0.1Co0.9Fe2O4)-modified glassy carbon electrode (NCF/GCE) was presented for the sensitive detection of paracetamol. Experimental conditions such as pH, applied potentials and concentration were investigated using cyclic voltammetric and chronoamperometric techniques. The modified electrode exhibited excellent catalytic response towards the oxidation of paracetamol with good reproducibility. The overpotential for oxidation of paracetamol is decreased, and the current response enhanced significantly on the modified electrode in comparison with that of bare electrode. Linear calibration curve is obtained over the range 2 μM to 8,000 μM having a detection limit of 11 nM. The modified electrode facilitated the simultaneous detection of paracetamol, ascorbic acid, and dopamine with good reproducibility.  相似文献   

13.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

14.
This work reports on the preparation of electrochemically reduced graphene oxide (ERGO)-poly(eriochrome black T) (pEBT) assembled gold nanoparticles for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in PBS pH 6.0. Characterisations of the composite were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. As a result of the synergistic effect, the modified glassy carbon electrode (GCE) possessed an efficient electrochemical catalytic activity with a high selectivity and sensitivity in oxidising AA-DA and DA-UA as compared to the bare GCE. The peak separations of AA and DA, DA and UA were 183 mV and 150 mV, respectively. The linear response ranges for AA, DA and UA were 10–900 μM, 0.5–20 μM and 2–70 μM with detection limits of 0.53 μM, 0.009 μM and 0.046 μM (S/N = 3), respectively. The sensitivity of ERGO-pEBT/AuNPs was measured as 0.003 µA/μM, 0.164 µA/μM and 0.034 µA/μM for AA, DA, and UA, respectively. The modified electrochemical sensor was used in the determination of AA, DA, and UA in vitamin C tablets and urine sample with good recovery.  相似文献   

15.
A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400???M, with a detection limit of 0.13???M (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.
Figure
1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively  相似文献   

16.
A sensitive electrochemical sensor for Cr(VI) detection based on N-doped carbon coated TiC nanofiber arrays (TiC@CNx NFAs) is reported. The abundant electrocatalytic active sites contained CNx shell, highly conducting TiC core, and good electrical contact between the TiC@CNx and underlying Ti alloy endow this electrode with the excellent electrochemical sensing properties. The developed electrochemical sensor shows remarkable determination activity towards Cr(VI) with a high sensitivity of 0.88 μA μM−1 cm−2, a low detection limit of 4.0 nM (S/N=3), a wide linear range from 0.2 to 24.1 μM, good selectivity and anti-interference property.  相似文献   

17.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

18.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

19.
《Electroanalysis》2017,29(4):1038-1048
Novel insights into the strategy of highly precise, carbon‐based electrochemical sensors are presented by exploring the excellent properties of graphene oxide (GO) and multiwalled carbon nanotube composites (GO‐MWCNTs/CPE) for the sensitive determination of tramadol hydrochloride (TRH). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) scanning electron microscopy, and X‐ray diffraction (XRD) techniques were used to characterize the properties of the sensor. The linear response obtained for TRH using the GO‐MWCNTs/CPE was found to be over the range of 2.0x10−9 to 1.1x10−3 M with a good linearity and high correlation (0.9996). The limits of detection and quantification were found to be 1.50x10−10 M and 4.99 x 10−10 M, respectively. The proposed sensor was applied for determination of TRH in the presence of presence of co‐formulated drugs ketorolac tromethamine (KTM) and paracetamol (PAR). The sensor was shown to successfully apply to the determination of TRH in plasma as real samples. Satisfactory recoveries of TRH from samples clearly revealed that the proposed sensor can be applied into clinical analysis, quality control and a routine determination of drugs in pharmaceutical formulations.  相似文献   

20.

Starting from simple graphite flakes, an electrochemical sensor for sunset yellow monitoring is developed by using a very simple and effective strategy. The direct electrochemical reduction of a suspension of exfoliated graphene oxide (GO) onto a glassy carbon electrode (GCE) surface leads to the electrodeposition of electrochemically reduced oxide at the surface, obtaining GCE/ERGO-modified electrodes. They are characterized by cyclic voltammetry (CV) measurements and field emission scanning electron spectroscopy (FE-SEM). The GCE/ERGO electrode has a high electrochemically active surface allowing efficient adsorption of SY. Using differential pulse voltammetry (DPV) technique with only 2 min accumulation, the GCE/ERGO sensor exhibits good performance to SY detection with a good linear calibration for concentration range varying 50–1000 nM (R2 = 0.996) and limit of detection (LOD) estimated to 19.2 nM (equivalent to 8.9 μg L−1). The developed sensor possesses a very high sensitivity of 9 μA/μM while fabricated with only one component. This electrochemical sensor also displays a good reliability with RSD value of 2.13% (n = 7) and excellent reusability (signal response change < 3.5% after 6 measuring/cleaning cycles). The GCE/ERGO demonstrates a successful practical application for determination of sunset yellow in commercial soft drinks.

Graphical abstract

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号