首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

2.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

3.
The analysis of plant growth regulators presents a challenge due to their trace quantities and complex matrices. A novel, simple, and effective analytical method for the determination of three trace acidic plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl was developed to address this issue. Three‐phase hollow fiber liquid‐phase microextraction combined with high‐performance liquid chromatography was applied for the enrichment, purification, and determination of three acidic plant growth regulators, namely, indole‐3‐acetic‐acid, indole‐3‐butyric‐acid, and (+)‐abscisic acid. The factors affecting extraction performance, including extractant species, pH of donor and acceptor phases, salt addition dosage, extraction time, temperature, and stirring rate, were investigated and optimized. Under optimum conditions, the proposed method provided good linearity (R2, 0.9994–0.9999), low limit of detection (0.038–0.12 ng/mL), and acceptable relative recoveries (56.7–117.6%). The enrichment factors were between 153 and 328. The developed method was successfully applied to the enrichment and determination of plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl and exhibited increased purification capacity, higher sensitivity, and decreased organic solvent consumption compared with conventional sample preparation methods. This method may provide a testing platform for the monitoring of plant growth regulator residues, ensuring the safe and effective use of traditional Chinese medicine.  相似文献   

4.
Two different modes of three‐phase hollow fiber liquid‐phase microextraction were studied for the extraction of two herbicides, bensulfuron‐methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high‐performance liquid chromatography. For both three‐phase hollow fiber liquid‐phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three‐phase hollow fiber liquid‐phase microextraction with an organic acceptor phase were linear in the range of 0.3–200 and 0.1–150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron‐methyl and linuron, respectively. For the conventional three‐phase hollow fiber liquid‐phase microextraction, the calibration curves were linear in the range of 3.0–250 and 15–400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron‐methyl and linuron, respectively. The real sample analysis was carried out by three‐phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.  相似文献   

5.
An automated three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high‐performance liquid chromatography with UV–Vis detection method was applied for the extraction and determination of exemestane, letrozole, and paclitaxel in water and urine samples. n‐Dodecane was selected as the supported liquid membrane and its polarity was justified by trioctylphosphine oxide. Acetonitrile was used as an organic acceptor phase with desirable immiscibility having n‐dodecane. All the effective parameters of the microextraction procedure such as type of the organic acceptor phase, the supported liquid membrane composition, extraction time, pH of the donor phase, hollow fiber length, stirring rate, and ionic strength were evaluated and optimized separately by a one variable at‐a‐time method. Under the optimal conditions, the linear dynamic ranges were 1.8–200 (R2 = 0.9991), 0.9–200 (R2 = 0.9987) and 1.2–200 μg/L (R2 = 0.9983), and the limits of detection were 0.6, 0.3, and 0.4 μg/L for exemestane, letrozole, and paclitaxel, respectively. To evaluate the capability of the proposed method in the analysis of biological samples, three different urinary samples were analyzed under the optimal conditions. The relative recoveries of the three pharmaceuticals were in the range of 91–107.3% for these three analytes.  相似文献   

6.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

7.
The whole grain intake is closely associated with human health. In this work, three‐phase dynamic hollow‐fiber liquid‐phase microextraction reinforced with 0.10 mg/mL 30 nm zeolitic imidazolate framework‐8 nanoparticles was introduced for purification and enrichment of free urinary metabolite biomarkers of whole grain intake. Eight milliliters of HCl (pH 3.00) and 8 μL of 300 mM NaOH solutions were used as the donor and acceptor phases, respectively. The temperature and stirring rate were kept at 25℃ and 500 rpm, and the extraction time was 40 min. The extraction process required no further desorption, and the resultant extract was directly used for electrophoretic analysis without derivatization. Based on the synergistic effect of hollow‐fiber liquid‐phase microextraction and the electrophoretic stacking, the enrichment factors of 3,5‐dihydroxybenzoic acid and 3‐(3,5‐dihydroxyphenyl)‐1‐propionic acid reached 1018–1034 times, and their limits of detection achieved 0.33–0.67 ng/mL (S/N = 3) in urine matrix. The developed method has been successfully used for urine analysis, and the sample recovery data were in the range of 97.0–103.5%. This developed method provided an attractive alternative for the determination of urinary metabolite biomarkers of whole grain intake due to its sensitive, fast, low‐cost, and environmental‐friendly features.  相似文献   

8.
In this study, two‐phase hollow‐fiber liquid‐phase microextraction and three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6–200 and 0.9–200 μg L?1 and the limits of detection were 0.2 and 0.3 μg L?1 for oxazepam and lorazepam, respectively. For two‐phase hollow fiber liquid‐phase microextraction, the calibration curves were found to be linear in the range of 1–200 and 1.5–200 μg L?1 and the limits of detection were 0.3 and 0.5 μg L?1 for oxazepam and lorazepam, respectively. In a urine sample, for three‐phase hollow‐fiber‐based liquid‐phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2–4.5% and preconcentration factors in the range of 70–180 were obtained for oxazepam and lorazepam, respectively. Also for the two‐phase hollow‐fiber liquid‐phase microextraction, preconcentration factors in the range of 101–257 were obtained for oxazepam and lorazepam, respectively.  相似文献   

9.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   

10.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

11.
A hollow fiber‐based liquid‐phase microextraction method has been developed for enrichment of trace chloroanilines in water samples. Target analytes including aniline, three mono‐chlorinated aniline isomers (o‐chloroaniline, m‐chloroaniline, and p‐chloroaniline) and four mono‐chlorinated methylaniline isomers (2‐chloro‐4‐methylaniline, 3‐chloro‐4‐methylaniline, 4‐chloro‐2‐methylaniline, and 5‐chloro‐2‐methylaniline) were determined by CE with amperometric detection after microextraction. Several factors that affect separation, detection, and extraction efficiency were investigated. Under the optimum conditions, eight aniline compounds could be well separated from other components coexisting in water samples within 25 min, exhibiting a linear calibration over three orders of magnitude (r > 0.998); the obtained enrichment factors were between 51 and 239, and the LODs were in the range of 0.01–0.1 ng/mL. The proposed method has been applied for the analyses of real environmental water and sewage samples with relative recoveries in the range of 83–108%.  相似文献   

12.
The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so‐called functionalized TiO2 hollow fiber solid/liquid‐phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid‐phase microextraction. All the experiments were monitored at λmax = 284 nm using a simple double beam UV‐visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (45) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid‐phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51–7000 μg/L (r2 = 0.991) and 0.21 μg/L as the limit of detection.  相似文献   

13.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

14.
Hollow fiber cell fishing, based on HepG‐2, SKOV‐3, and ACHN cancer cells, and hollow fiber liquid/solid microextraction with HPLC were developed and introduced for researching the anticancer activity of Rhizoma Curcumae Longae, Radix Curcumae, and Rhizoma Curcumae. The structures of curcumin, demethoxycurcumin, and bisdemethoxycurcumin screened were identified and their contents were determined. The compound target fishing factors and cell apoptosis rates under the effect of the three medicines were determined. The binding sites (cell membrane and cell organelle) and binding target (phospholipase C) on the cell were researched. Hollow fiber liquid/solid‐phase microextraction mechanism was analyzed and expounded. Before the application, cell seeding time, growth state and survival rate, compound nonspecific binding, positive and negative controls, repeatability in hollow fiber cell fishing with high‐performance liquid chromatography; extraction solvent, sample pH, salt concentration, agitation speed, extraction time, temperature and sample volume in hollow fiber liquid/solid‐phase microextraction with high‐performance liquid chromatography were investigated. The results demonstrated that the proposed strategy is a simple and quick method to identify bioactive compounds at the cellular level as well as determine their contents (particularly trace levels of the bioactive compounds), analyze multicompound and multitarget entirety effects, and elucidate the efficacious material base in traditional medicine.  相似文献   

15.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

16.
A novel microextraction method, ordered mesoporous carbon reinforced hollow fiber liquid‐phase microextraction coupled with high‐performance liquid chromatography and fluorescence detection, was developed for the determination of some organic pollutants in water samples. Four polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, and pyrene) were selected to validate this new method. Main parameters that could influence the extraction efficiency such as extraction time, fiber length, stirring rate, the type of the extraction solvent, pH value, the concentration of ordered mesoporous carbon, and salt effect were optimized. Under the optimal extraction conditions, good linearity was observed in the range of 2–1000 ng/L, with the correlation coefficients of 0.9954–0.9986. The recoveries for the spiked samples were in the range of 88.96–100.17%. The limits of detection of the method were 0.4–4 ng/L. The relative standard deviations varied from 4.2–5.9%. The results demonstrated that the newly developed method was an efficient pretreatment and enrichment procedure for the determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

17.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

18.
A fast, simple, and efficient salt‐assisted dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed and introduced for the simultaneous enrichment, extraction, and determination of the trace levels of matrine alkaloids (sophoridine, matrine, and sophocarpine) in Sophorae Flavescentis Radix and Composite Kushen injection. Compared with conventional dispersive liquid–liquid microextraction, the proposed method, with added salt but without dispersant and centrifuging, makes the operation simpler, greener, and leads to a higher enrichment factor. The crucial parameters affecting the enrichment factors of target analytes, such as type and volume of extraction solvent, pH of sample phase, salt concentration, volume of sample phase, and extraction time, were investigated and optimized, meanwhile, the extraction mechanism of the method was analyzed and described. Under the optimized conditions, the enrichment factors of the three matrine alkaloids were 150, 178, and 227, respectively. Good linearities (r≥ 0.9992) for all analytes, low limits of detection (less than 0.08 ng/mL), satisfactory precisions (2.1–12.3%), and accuracies (recoveries, 99.3–103.9%) were achieved. The experimental results showed that the approach is a simple, fast, green, eco‐friendly, and sensitive method and can be used for the preconcentration and determination of matrine alkaloids in traditional Chinese medicines and their preparations.  相似文献   

19.
The monosaccharide compositions of functional polysaccharides are essential for structure elucidation and biological activity determination. A sensitive method based on on‐line hollow‐fiber liquid‐phase microextraction with high‐performance liquid chromatography has been established for the analysis of ten monosaccharide compositions (two uronic acids, two amino sugars and six neutral sugars) of the immunomodulatory polysaccharides. After derivatization , the sample was injected into the lumen of a hollow fiber immersed in butyl ether and separated by liquid chromatography. Under optimized conditions, the calibration curves were linear (r ≥ 0.9996) in the range of 10–2000 μmol L?1. The limits of detection were in the range of 0.04–1.58 μmol L?1, and the recoveries were in the range of 92.1–99.6%, which shows that the method is applicable to the analysis of the monosaccharide composition of various polysaccharides.  相似文献   

20.
A three phase hollow fiber liquid‐phase microextraction technique combined with capillary electrophoresis was developed to quantify lamotrigine (LTG) in plasma samples. The analyte was extracted from 4.0 mL of a basic donor phase (composed of 0.5 mL of plasma and 3.5 mL of sodium phosphate solution pH 9.0) through a supported liquid membrane composed of 1‐octanol immobilized in the pores of the hollow fiber, and to an acidic acceptor phase (hydrochloric acid solution pH 4.0) placed in the lumen of the fiber. The extraction was carried out for 30 min at 500 rpm. The eletrophoretic analysis was carried out in 130 mmol/L MES buffer, pH 5.0 with a constant voltage of +15 kV and 20°C. Sample injections were performed for 10 s, at a pressure of 0.5 psi. The detection was performed at 214 nm for both LTG and the internal standard lidocaine. Under the optimized conditions, the method showed a limit of quantification of 1.0 μg/mL and was linear over the plasmatic concentration range of 1.0–20.0 μg/mL. Finally, the validated method was applied for the quantification of LTG in plasma samples of epileptic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号