首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.  相似文献   

2.
以热力学为基础,结合化学反应速率方程,推导得出描述超高速碰撞产生的等离子体电子密度与系统内能关系的物理方程组. 应用自行编写的二维光滑粒子流体动力学(smoothed particle hydrodynamics, SPH) 程序求解了此方程组,在模拟超高速碰撞过程中计算产生的等离子体,实现对超高速碰撞产生等离子体的数值模拟.进行铝球超高速碰撞双层铝板的数值模拟研究,给出与实验对比的结果. 统计前后两次碰撞产生等离子体的电量,发现碰撞较薄的前板产生了较少的电荷而一次碎片云对较厚后板的碰撞产生了大量的电荷. 交换前后两板的位置. 进行相同速度碰撞的模拟,分析结果发现一次碎片云碰撞后板产生的等离子体电量远小于第一次的模拟结果,而前板碰撞产生的等离子体电量要高于第一次模拟结果,由此可见,超高速碰撞产生等离子体的总电量不仅与弹丸的质量和碰撞速度有关,与薄板的厚度也有很大的关系,通过一次碎片云与第二层板碰撞可以产生远高于弹丸碰撞单层板产生的电量,可以提高等离子体产生效率,增强对航天器的电磁毁伤.  相似文献   

3.
甲烷气体的一维冲击反应动力学数值模拟   总被引:1,自引:1,他引:1  
在一维无粘流体反应动力学理论基础上,分别选用无化学反应,7组元17反应和13组元和40反应模型模拟了常温下压力为0.12MPa时甲烷气体受高速飞片撞击的冲击反应流动,给出了飞片速度为3-9km/s范围内共27个算例的数值结果。在相同的初始条件下,当飞片速度较低(如3km/s)时三种反应模型给出几乎相同的结果,计算与实验结果比较表明,在较高的飞片速度下,13组元40反应模型给出的数值结果与实验结果基本一致。  相似文献   

4.
人体上呼吸道内气流运动特性的数值模拟分析   总被引:2,自引:0,他引:2  
运用计算流体动力学(CFD)方法对人体上呼吸道内的气流运动特性进行了数值模拟,通过PIV实验对数值模拟结果进行了验证。研究结果表明:气流在咽部外壁、气管外壁发生分离现象,气流在气管内壁形成局部高速区,支气管内的气流在分叉处发生分离,靠近支气管内壁速度较高,并且在支气管边界层的外缘速度达到最大值。气管和支气管内的二次涡流运动和轴向速度的分布使得气管支气管内壁受到的剪应力较大,内壁粘膜更容易受到损伤。  相似文献   

5.
采用数值模拟手段,在对模拟结果与现场测量结果验证的基础上,考虑二沉池混合液的流变性质、污泥回流比率等实际工况,以OpenFOAM开源流体力学代码为研究工具,针对不同入口流量下二沉池内固液两相动力学行为进行研究.结果表明:随着入口流量的增大,液相流速高值分布于入口区域并向污泥斗回流口区域波及,二沉池内液相流场结构由两层发展为三层;池内污泥浓度峰值不断提高,污泥层底部及污泥斗区域的污泥浓度高值区的面积不断扩大,出口及回流口污泥平均浓度增长幅度不断增大;二沉池上部的污泥沉降速度略微增大.  相似文献   

6.
铁路空调硬卧车内气流分布的数值模拟   总被引:3,自引:0,他引:3  
建立了铁路空调硬卧车内CFD仿真模型,对车厢内流场、温度场和热舒适性评价指标进行了分析。采用稳态不可压缩雷诺时均N-S方程、k-ε湍流模型,应用控制容积法和交错网格进行离散。计算了空调硬卧车内三维空气流场和温度场,并与实验结果进行了对照,两者吻合较好。在此基础上分析了车厢内人体热舒适性,结果表明车厢中部和端部铺位PMV分布不同,端部人体热舒适感较好,中部较差;而且同一计算断面不同铺位的人体热舒适感差异较大:上铺有较大区域PMV<-1.0,人体感觉较凉;中铺大部分区域-0.51.0,人体感觉偏暖。  相似文献   

7.
谢富佩  徐绯  曾卓  周中玉  谷卓伟 《爆炸与冲击》2021,41(11):112201-1-112201-10

针对复合圆柱壳在炸药爆轰作用下的动力学响应及在此过程中伴随的失稳问题,研究了其制造工艺中可能出现的缺陷以及圆柱壳中铜线螺旋角和直径对复合圆柱壳稳定性产生的影响。采用SPH-FEM耦合算法,建立了复合圆柱壳二维细节模型,并提出了一种基于圆柱壳内壁粒子速度历史的失稳判据,计算了在不同参数条件下复合圆柱壳的失稳时间及对应的压缩率,对影响复合圆柱壳稳定性的因素进行了评估。分析结果表明,在复合圆柱壳制备过程中存在的折返层缺陷和铜线直径对复合圆柱壳的稳定性有较大影响,而螺旋角度对其稳定性影响不大。

  相似文献   

8.
基于计算流体动力学软件Fluent17.2,以浙江温州大学某栋带女儿墙的多层试验教学楼为研究对象,采用RNG k-ε湍流模型对其进行数值模拟.通过对不同风向角下的数值模拟结果进行对比分析,探究屋顶风场与未受扰来流风场的区别,屋顶不同高度风场的差异,以及不同风向角来流情况下近屋面风场的分布特点、变化规律.结果表明:在离屋面高8m以下,屋顶风速变化剧烈混乱,屋面前沿、中部、后方区域的风速会随高度增加发生变化,并与未受扰来流风场相比存在较大差别;在女儿墙高度1.2m以下,屋面四周区域风速小于中部区域;在离屋面高1.2m~8m时,同一高度屋面前沿区域风速却要大于中部区域及后方区域;在不同的风向角来流下,当来流与建筑迎风面垂直时,屋顶风场沿中线对称分布.本文所得结论可为屋顶各类设备的抗风设计提供一定的参考依据.  相似文献   

9.
近海水域海洋流体动力学方程数值模拟的研究,最早可追溯到1919年Defant的工作,50年代末开始得到蓬勃发展。60年代和70年代主要发展二维全流模式。现在对于二维全流模式数值模拟的研究应该说是相当完善的,不仅有系统的理论,提出了许多有效的方法,而且广泛地应用于诸如潮汐环流、风暴潮等的工程和预报的实际计算。三维模式是70年代开始发展的,近10年来发展很快。三维模式比较起二维模式来,其数值模拟自然要困难许多。这引起了研究者广泛的兴趣。现在三维模式的数值模拟,虽然提出的方法很多,也已有了不少成果,但研究工作仍是方兴未艾。  相似文献   

10.
新型电脱水技术利用高压电场对乳状液中液滴的变形、聚合具有一定的影响,其中电场参数的选择对液滴变形和聚合效率具有显著影响.适度的液滴变形将促进液滴聚合,过度的变形则可能使液滴破裂成更多的小液滴而增加乳状液分离的难度.本文引入光滑粒子流体动力学方法,对电场强度的变化对液滴变形和破裂过程的影响进行了数值模拟分析.结果表明:电场强度一定程度的增大能提高液滴变形速度并加速其聚合,如果场强过高则液滴破裂;在同一电场强度作用下,粒径较小的液滴比粒径较大的液滴变形困难.  相似文献   

11.
First, the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline, and the period is small for slug flow without the settled layer, which is called solitary slug flow. The pressure drop for soft particles is shown to be larger than that for hard particles. Then, experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an imnortant factor for high mass flow rate of particles.  相似文献   

12.
First,the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline,and the period is small for slug flow without the settled layer,which is called solitary slug flow.The pressure drop for soft particles is shown to be larger than that for hard particles.Then,experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an important factor for high mass flow rate of particles.  相似文献   

13.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders.Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash(median particle diameter 30μm;particle density 2300kg/m~3;loosepoured bulk density 700kg/m~3) and white powder(median particle diameter 55 u.m;particle density1600kg/m~3;loose-poured bulk density 620kg/m~3) from dilute to fluidized dense-phase.Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations.It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections.However,both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s).This result could be attributed to the deceleration of particles while flowing through the bends,resulting in dampened particle fluctuation and turbulence.Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow(dense-phase),i.e.,there is a higher probability that the particles are concentrated toward the bottom of pipe,compared with dilute-phase or suspension flow(high velocity),where the particles could be expected to be distributed homogenously throughout the pipe bore(as the flow is in suspension).Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

14.
The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based single-channel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.  相似文献   

15.
Predicting the mode of flow in pneumatic conveying systems-A review   总被引:2,自引:0,他引:2  
An initial prediction of the particulate mode of flow in pneumatic conveying systems is beneficial as this knowledge can provide clearer direction to the pneumatic conveying design process.There are three general categories of modes of flow,two dense flows:fluidised dense phase and plug flow,and dilute phase only.Detailed in this paper is a review of the commonly used and available techniques for predicting mode of flow.Two types of predictive charts were defined:basic particle parameter based (e.g.particle size and density) and air-particle parameter based (e.g.permeability and de-aeration).The basic particle techniques were found to have strong and weak areas of predictive ability,on the basis of a comparison with data from materials with known mode of flow capability.It was found that there was only slight improvement in predictive ability when the particle density was replaced by loose-poured bulk density in the basic parameter techniques.The air-particle-parameter-based techniques also showed well-defined regions for mode of flow prediction though the data set used was smaller than that for the basic techniques.Also,it was found to be difficult to utilise de-aeration values from different researchers and subsequently,an air-particle-based technique was developed which does not require any de-aeration parameter in its assessment.  相似文献   

16.
Predicting the mode of flow in pneumatic conveying systems-- A review   总被引:1,自引:0,他引:1  
An initial prediction of the particulate mode of flow in pneumatic conveying systems is beneficial as this knowledge can provide clearer direction to the pneumatic conveying design process. There are three general categories of modes of flow, two dense flows: fluidised dense phase and plug flow, and dilute phase oniy. Detailed in this paper is a review of the commonly used and available techniques for predicting mode of flow. Two types of predictive charts were defined: basic particle parameter based (e.g. particle size and density) and air-particle parameter based (e.g. permeability and de-aeration). The basic particle techniques were found to have strong and weak areas of predictive ability, on the basis of a comparison with data from materials with known mode of flow capability. It was found that there was only slight improvement in predictive ability when the particle density was replaced by loose-poured bulk density in the basic parameter techniques. The air-particle-parameter-based techniques also showed well-defined regions for mode of flow prediction though the data set used was smaller than that for the basic techniques. Also, it was found to be difficult to utilise de-aeration values from different researchers and subsequently, an air-particle-based technique was developed which does not require any de-aeration parameter in its assessment.  相似文献   

17.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses.Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved.Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy.This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders.The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations.In particular,the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz.A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline.Furthermore,there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

18.
Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses. Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved. Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy. This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders. The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations. In particular, the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz. A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline. Furthermore, there was significant variation in gas pulse amplitude for different types of particulate material.  相似文献   

19.
The estimation of the blockage boundary for pneumatic conveying through a slit is of significant importance.In this paper,we investigate the characteristics for blockage of powder(48 μm average diameter)through a horizontal slit(1.6 m × 0.05 m × 0.002 m).The results show that the required critical solid mass flow rate increases as the superficial air velocity increases superficial air velocity.The solid loading ratio and superficial air velocity displayed a decreasing power law relationship.This finding agrees with existing theory and experimental results.However,a minimum inlet solid loading ratio exists.When the air velocity is greater than the corresponding air velocity of the minimum solid loading ratio,the solid loading ratio exhibits an increasing trend in power law.We also found that when the inlet conveying pressure increased,the critical solid mass flow rate required for blockage,the inlet solid loading ratio,and the minimum inlet solid loading ratio increased.  相似文献   

20.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号