首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Microstructure and magnetic properties of Sn-substituted MnZn ferrites   总被引:1,自引:0,他引:1  
Sn-substituted MnZn ferrites were prepared by conventional oxide ceramic process. The influences of Sn substitution on microstructure and magnetic properties of MnZn ferrites were investigated. The results indicated that with increase of Sn substitute concentration, the diffraction peaks shifted slightly towards the lower angles and the lattice parameter (a) increased. And at room temperature, the bulk density (dm), initial permeability (μi), saturation magnetic induction (Bs) and electrical resistivity (ρ) of Sn-substituted MnZn ferrites all increased initially and then decreased with the further increase of Sn substitute concentration, while the power losses decreased first and then increased subsequently. Meanwhile, the temperature of secondary maximum peak of μi-T curve and the minimum losses moved to lower temperature while the Sn substitute concentration increased. When the content of Sn substitution was 0.3 mol%, at room temperature, the initial permeability, saturation magnetic induction, density and electrical resistivity reached their maxima, while the hysteresis loss (Ph), eddy current loss (Pe) and total losses (Pcv) achieved their minima. The PhT and μi-T curves varied contrarily, and due to the contribution of extra eddy current loss (Pe,exc) that was proportional to Ph, the Pe-T curve did not agree with its classical expression. Finally, MnZn ferrite substituted with 0.3 mol% SnO2 shows the highest initial permeability (3894) and lowest losses (303 kW/m3) at room temperature.  相似文献   

2.
A series of Sb-doped SnO2 samples, with doping levels 0, 3.1, 6.2, 11.9 and 14.0 at% Sb, has been hydrothermally prepared and characterized by X-ray powder diffraction. Diffraction lines were broadened, the line broadening being anisotropic. Both the line broadening and line anisotropy were dependent on the Sb doping level. The samples are tetragonal, space group P42/mnm and isostructural with TiO2(rutile). Sb doping of SnO2 causes the increase of unit-cell parameters. The structure of pure SnO2 and of samples containing 6.2 and 11.9 at% Sb has been refined by the Rietveld method. Crystal structure indicated that both Sb3+ and Sb5+ are substituted for Sn4+ in the SnO2 structure, Sb3+ being dominant for the investigated doped samples. The samples were also examined by 119Sn- and 121Sb-Mössbauer spectroscopy. Mössbauer spectroscopy confirmed the XRD results. Also, the values of the isomer shifts and quadrupole coupling constants indicated that the configuration around the Sb3+ site includes the presence of the stereochemically active lone pair electrons.  相似文献   

3.
MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by the conventional ceramic technique. Toroidal cores were sintered at 1350 °C for 4 h in N2/O2 atmosphere with 4% oxygen. Then the influence of Ta2O5 addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites was investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 °C. The results show that, when the Ta2O5 concentration is not more than 0.04wt%, the grain size has a slight increase with the increase of Ta2O5 concentration, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to lower temperature. However, excessive Ta2O5 concentration (>0.04wt%) results in the exaggerated grain growth and porosity increase, which make the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to about 100 °C.  相似文献   

4.
Pr3+-doped Ni-Zn ferrites with a nominal composition of Ni0.5Zn0.5PrxFe2−xO4 (where x=0-0.08) were prepared by a one-step synthesis. The magnetic and dielectric properties of the as-prepared Ni-Zn ferrites were investigated. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase in combination of a small amount of a foreign PrFeO3 phase. The lattice constants of the ferrites initially increased after Pr3+ doping, but then became smaller with additional Pr3+ doping. The addition of Pr3+ resulted in a reduction of grain size and an increase of density and densification of the as-prepared samples. Magnetic measurement revealed that the saturation magnetization of the as-prepared ferrites, Ms, decreased, while the coercivity, Hc, increased with increasing substitution level, x, and the Curie temperature, Tc, kept a rather high value, fluctuating between 308 and 320 °C. Both the real and imaginary parts of permeability of the ferrites decreased slightly after Pr3+ doping. However, the natural resonance frequency shifted towards higher frequency from 13.07 to 36.17 MHz after the addition of Pr3+, driving the magnetic permeability to much higher frequency, reaching the highest value (36.17 MHz) when x=0.04. Introduction of Pr3+ ions into the Ni-Zn ferrite reduced the values of the dielectric loss tangent, especially in the frequency range of 1-400 MHz. However, the magnitude of dielectric loss of the samples doped with different amounts of Pr3+ raised little.  相似文献   

5.
In this paper, the effects of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites were investigated. Toroidal cores were prepared by the conventional ceramic process and sintered at 1360 °C for 4 h in atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The experimental results show that the substitution of Sn4+ in manganese-zinc ferrites can influence the thermal stability and disaccommodation remarkably. Secondly, the temperature dependence of the initial permeability μi and disaccommodation of Sn-substitution manganese-zinc ferrites have an internal relationship. The experimental results are explained and compared with those of Ti-substitution manganese-zinc ferrite.  相似文献   

6.
Complex oxides demonstrate specific electric and magnetic properties which make them suitable for a wide variety of applications, including dilute magnetic semiconductors for spin electronics. A tin-iron oxide Sn1−xFexO2 nanoparticulate material has been successfully synthesized by using the laser pyrolysis of tetramethyl tin-iron pentacarbonyl-air mixtures. Fe doping of SnO2 nanoparticles has been varied systematically in the 3-10 at% range. As determined by EDAX, the Fe/Sn ratio (in at%) in powders varied between 0.14 and 0.64. XRD studies of Sn1−xFexO2 nanoscale powders, revealed only structurally modified SnO2 due to the incorporation of Fe into the lattice mainly by substitutional changes. The substitution of Fe3+ in the Sn4+ positions (Fe3+ has smaller ionic radius as compared to the ionic radius of 0.69 Å for Sn4+) with the formation of a mixed oxide Sn1−xFexO2 is suggested. A lattice contraction consistent with the determined Fe/Sn atomic ratios was observed. The nanoparticle size decreases with the Fe doping (about 7 nm for the highest Fe content). Temperature dependent 57Fe Mössbauer spectroscopy data point to the additional presence of defected Fe3+-based oxide nanoclusters with blocking temperatures below 60 K. A new Fe phase presenting magnetic order at substantially higher temperatures was evidenced and assigned to a new type of magnetism relating to the dispersed Fe ions into the SnO2 matrix.  相似文献   

7.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

8.
In the present work, mixed magnesium-manganese ferrites of composition Mg0.9Mn0.1Al0.3CozFe1.7−zO4 where z=0.3, 0.5 and 0.7 have been synthesized by the citrate precursor technique. X-ray diffraction patterns of the samples confirmed the formation of single-phase spinel structure. The ferrites have been investigated for their electric and magnetic properties such as dc resistivity, Curie temperature, saturation magnetization, initial permeability and relative loss factor (RLF). Fairly constant value of initial permeability over a wide frequency range (0.1-20 MHz) and low values of the relative loss factor of the order of 10−4-10−5, in the frequency range 0.1-30 MHz, are the cardinal achievements of the present investigation. In addition to this, initial permeability was found to increase with an increase in temperature while RLF was observed to be low at these temperatures. The dc resistivity and Curie temperature were found to increase with an increase in cobalt content. The mechanisms contributing to these results are discussed in detail in this paper.  相似文献   

9.
The effect of cobalt addition on the temperature characteristics of the magnetic permeability of NiZn ferrites was studied and a comparison to the respective behaviour of cobalt in NiCuZn ferrites was examined. Cobalt-doped NiZn and NiCuZn ferrites were manufactured by the ceramic route and sintered under various atmosphere profiles. The chemical and morphological characteristics were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The evaluation of the magnetic performance of the sintered ferrites showed that N2-rich atmosphere profiles during the top temperature and cooling time of the sintering process favour the temperature stability of the permeability in the case of NiZn ferrites, while preserving the losses at low levels. Two mechanisms that take place at the same time are proposed: the change of the Fe2+/Fe3+ ratio due to the reduction-promoting atmosphere of N2 in combination with an increase in magnetocrystalline anisotropy and magnetostriction due to the presence of Co2+ suggest a useful method to tailor the temperature factor αF of NiZn ferrites. However, the method cannot be applied in NiCuZn ferrites, as the reduction Cu2+-Cu+ taking place under N2-rich atmospheres enhances secondary re-crystallization phenomena, causing a dramatic increase in losses.  相似文献   

10.
Electron trapping center and SnO2-doping mechanism of indium tin oxide   总被引:2,自引:0,他引:2  
Indium tin oxide (ITO) and Er3+-doped ITO powders were prepared by a conventional ceramic method. The density of ITO powders and optical absorption spectra of Er3+ ions in Er3+-doped ITO were measured as a function of the SnO2 doping level. The results obtained were discussed in terms of the trapping center for immobile electrons in ITO. Observed densities of ITO powders were in good agreement with those calculated from their lattice parameters, assuming that the immobile electrons were trapped at the excess interstitial oxygen. The optical absorption spectra of Er3+-doped ITO indicated that some In3+ ions in ITO were surrounded by 7 and/or 8 oxygen ions; the increase in the coordination number of In3+ from 6 in In2O3 to 7 and/or 8 in ITO must be caused by the introduction of excess interstitial oxygen into the quasi-anion site in the C-typerare-earth lattice upon SnO2 doping. It was concluded that the immobile electrons in ITO are trapped at the excess interstitial oxygen, and that the mechanism of conduction carrier generation and compensation upon SnO2 doping into In2O3 can be expressed by the defect equation, 2SnO2?2SnIn·+2(1-z)e+zOi ′′+3OO ×+(1-z)/2O2. Received: 26 November 1999 / Accepted: 20 April 2000 / Published online: 13 September 2000  相似文献   

11.
Iron-doped SnO2 nanoparticles with chemical formula Sn1?xFexO2?y (x =?0.02, 0.05 and 0.10 at%) were successfully produced by a proteic sol–gel method. Thermogravimetric analysis and differential scanning calorimetry were performed to investigate the thermal behavior of the precursor powders as well as to select the appropriate calcination temperatures for oxide formation. X-ray absorption near-edge spectroscopy studies were carried out to determine the valence state of the transition metal used as dopant. Structural, morphological, and optical properties of the synthesized materials were studied by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results confirmed the formation of nanometric spherical particles of single-phased SnO2 with rutile-type tetragonal structure. Iron doping was accomplished in the form of Fe3+ substituting for Sn4+ in the SnO2 matrix, with the creation of oxygen vacancies to achieve charge balance. Band gaps of SnO2 were found to be unaffected by the introduction of iron.  相似文献   

12.
A novel ZrO2:Sm3+,Sn4+ phosphor is synthesized by solid state reaction. The ZrO2:Sm3+ does not show afterglow. But, after doping Sn4+, intense red afterglow luminescence is firstly observed in ZrO2:Sm3+,Sn4+ and it can last more than 1000 s at maximum. The afterglow decay curves of ZrO2:Sm3+,Sn4+ are fitted by three exponential components and the decay process consists of initial fast, intermediate and slow decay. The thermoluminescence indicates that the Sn4+ ions induce suitable traps with the depth of 0.436 eV and result in efficient afterglow luminescence of ZrO2:Sm3+,Sn4+. The thermoluminescence filling and fading experiments further confirm the important role of the proper shallow traps induced by doping Sn4+ on the afterglow of ZrO2:Sm3+,Sn4+.  相似文献   

13.
Effects of composition and sintering temperature on grain size, porosity and magnetic properties of the NiZn and NiCuZn ferrites were investigated. It was found that the lowest power loss could be obtained with the equimolar composition for both NiZn and NiCuZn ferrites, which could be attributed to the lowest porosity. A slight deficiency or excess of Fe2O3 content had no pronounced influence on saturation magnetic flux density (Bs) in our testing range. However, a slight excess of Fe2O3 was effective to improve the initial permeability, which could be attributed to decrease of the magnetocrystalline anisotropy. With the increase of sintering temperature, the initial permeability and power loss of the NiZn and NiCuZn ferrites had different development trend, which could be explained by the different variation trend of the grain size and porosity. Power losses of the NiCuZn ferrite samples were lower than that of the NiZn ferrite samples at any sintering temperature. Synthetically, the NiCuZn ferrites had a better performance than the NiZn ferrites in power field use.  相似文献   

14.
The microstructure and magnetic properties of SnO2-doped NiZn ferrites prepared by a solid-state reaction method have been investigated. Due to its low melting point (∼1127 °C), moderate SnO2 enhanced mass transfer and sintering by forming liquid phase, which accelerated the grain growth. However, excessive SnO2 producing much of liquid phase retarded mass transfer and sintering, leading to a decrease in grain size. The diffraction intensity of the samples doped with SnO2 addition was stronger than that of the sample without addition. The lattice constant initially decreased up to a content of 0.10 wt% and showed an increase at higher content up to 0.50 wt%. The initial permeability (μi) initially increased up to a content of 0.15 wt% and showed a decrease at higher content up to 0.50 wt%; however, losses (PL) measured at 50 kHz and 150 mT changed contrarily. Both saturation induction (BS) and Curie temperature (TC) decreased gradually with increasing SnO2. Finally, the sample doped with 0.10–0.15 wt% SnO2 showed the higher permeability and lower losses.  相似文献   

15.
This study examined the applicability of TiO2/SnO2/TiCl4 hybrid electrodes in dye-sensitized solar cells (DSSCs) by combining chemical modeling with experimentation. The interfacial chemical reactions in a TiO2/SnO2/TiCl4 system were simulated using a thermochemistry software package, which led to the design and testing of hybrid working electrodes. Chemical thermodynamic modeling proved that TiCl4 is an effective agent in removing Tin+ (n<4) and Snm+ (m<4) ion impurities from dry-mixed TiO2/SnO2 composite particles. Our results demonstrate that the power conversion efficiency of DSSC with a TiO2/SnO2/TiCl4 hybrid electrode exceeds that of the conventional DSSC with a TiO2 electrode due to the effects of light-scattering and the formation of additional absorbance (SnCl2), which is an unexpected side effect of TiCl4 treatment enabling the absorption of visible light. The proposed approach is ideally suited to establishing relationships between chemistry theory and the structure and performance of advanced DSSCs as well as photo-electro-chemical systems.  相似文献   

16.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

17.
Magnetization and permeability of polycrystalline ferrites with general formula CdxMg1−xFe2−yCryO4 (x=0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0, 0.05 and 0.10) were studied. Study of saturation magnetization reveals that the Neel's two-sublattice model exists upto x=0.4, for y=0, 0.05 and 0.1 and a three-sublattice model (YK-model) is predominant for x>0.4 and y=0, 0.05 and 0.10. The saturation magnetization and magnetic moment were found to decrease with the increase in Cr3+ contents, which is attributed to the dilution of B–B site interaction. Variation of initial permeability with temperature revealed the long-range ferromagnetic ordering in the compounds with x=0.4. The sample with x?0.4 and y=0, 0.05 and 0.10 showed peaking behavior near Curie temperature, which is attributed to the decrease of anisotropy constant K1 to zero. Low-frequency dispersion of initial permeability suggests domain wall displacement. Addition of Cd2+ resulted in a sharp decrease in Curie temperature. With the addition of Cr3+, initial permeability was found to decrease.  相似文献   

18.
The relations between the electrical characteristics of BaSn1?x Sb x O3 perovskite system and the contents of BaO, Sb2O3 and silicate sintering agent were studied by X-ray diffraction analysis and Mössbauer spectroscopy. It was found that the electrical conductivity is related to the substitution of Sb3+ for Sn4+, the content of sintering agent and the phase constitutents in samples. BaSnO3, Ba3Sn2O7, Ba2SnO4 and SnO2 phases might appear in different fractions when the contents of BaO change from 0.5 mole to 3.5 mole. In low antimony percentage condition, pentavalent Sb3+ ions inserted in Sn4+ sites and formed the donor center. In high antimony percentage (x≥0.20) condition, the existence of an insulating phase (BaSb2O6) was confirmed.  相似文献   

19.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

20.
The magnetic properties of Mn–Zn ferrite such as initial permeability, saturation magnetization, Curie temperature, resistivity and power loss are affected greatly by the Fe2+ content in the raw materials. The experimental results show that low resistivity (ρ) and high eddy current loss (Pe) are induced by the superfluous Fe2+ content in the raw materials; the scant Fe2+ content in the raw materials will increase hysteresis loss (Ph) and decrease Curie temperature (Tc), saturation magnetization (Ms) and initial permeability (μi).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号