首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presented compound, Sr2TaMnO6, has a weak, disordered magnetic structure. The metal oxide was prepared under high isostatic oxygen pressure. The doubling of the perovskite structure was proven with electron diffraction and powder neutron diffraction. Combining neutron- and X-ray diffraction data, the room-temperature structure was modelled with the Rietveld method. Both octahedral positions are partially occupied by Mn and Ta, but with different Mn/Ta ratios. AC- and DC-magnetic measurements indicate a magnetic transition at about 17 K and the AC-magnetic susceptibility, both real and imaginary part, is frequency dependent, suggesting that the material has a spin-glass feature. The magnetic spins freeze during a wide temperature range and a possible explanation is a competative situation between the double exchange (ferromagnetism) and the super-exchange (anti-ferromagnetism).  相似文献   

2.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

3.
Using ac susceptibility, dc magnetization and heat-capacity measurements, we have investigated the magnetic properties of Cd0.5Cu0.5Cr2O4. Cd0.5Cu0.5Cr2O4 has an extraordinary magnetic phase including a metastable spin-glass (SG) phase at zero field, a possible phase separation scenario of AFM/FM above ∼0.5 T field, and at intermediate fields, an apparent pseudo reentrant spin-glass (RSG) plateau is observed. These phenomena are closely correlated with the pinning effect of the Cu2+ sublattice on the frustrated lattice.  相似文献   

4.
Samples of nominal composition Fe0.9-xMn0.1Alx (0.1 ? x ? 0.5) were prepared by mechanical alloying starting from pure elements. Milling times of 24, 72 and 144 h were considered. The magnetic properties of the samples were studied by using 57Fe Mössbauer spectroscopy, vibrating sample magnetometry and magnetic susceptibility measurements. The phase distribution was determined from X-ray diffractometry. The so obtained results evidence a strong dependence on the milling time and Al concentration of the room-temperature hyperfine field distributions and coercive forces. The susceptibility measurements in the range of temperature between 10 K and 180 K suggest the occurrence of different types of transitions as the temperature is increased: (a) from a ferromagnetic to a paramagnetic phase, (b) from a reentrant spin-glass phase to a ferromagnetic one and (c) from spin-glass to a paramagnetic phase. These transitions are also strongly influenced by the milling time and the Al concentration.  相似文献   

5.
6.
Magnetic interparticle interactions compete with the magnetic blocking of ultrafine magnetic nanoparticles. We have prepared maghemite (γ-Fe2O3) nanoparticles by microwave plasma synthesis as a loose powder and in compacted form. In ZFC/FC measurements, blocking temperature of the compacted sample C is larger than that of the powder sample P. The frequency dependence of AC susceptibility of the sample C shows a large shift of blocking temperature with increasing frequency. Vogel-Fulcher law gives a large value of T0 for the sample C. To get evidence of a possible spin-glass freezing in both samples, scaling law fitting is applied to the AC susceptibility data. The value of the exponent (zv) of the critical slowing down dynamics fits to the spin-glass regime for both samples. For the sample P, spin-glass freezing occurs on the surface of individual nanoparticles, while in the sample C surface spin-glass freezing is concomitant with a superspin-glass formation as a consequence of coupling between particles. The sample C also shows an enhancement of coercivity due to dipolar interactions among the nanoparticles. Exchange interactions are attributed only to touching nanoparticles across their interfaces. All these measurements indicate the presence of strong interparticle dipolar interactions in the compacted sample C.  相似文献   

7.
We report the preparation and the structural and morphological characterization of the perovskite compound NdSr2RuCu2Oy. The crystal structure of this material has been determined by a combined high-resolution electron microscopy, selected area electron diffraction and high-resolution X-ray powder diffraction study. The morphology of the samples has been monitored by a scanning electron microscope equipped with an energy dispersive spectrometer attachment by which the microanalysis of the crystallites has been also performed. Finally, dc magnetic susceptibility measurements show that this compound behaves like an enhanced paramagnetic metal with evidence of neither magnetic order and neither superconducting one. Received 15 November 2001  相似文献   

8.
The magnetic properties of four compounds in the series CaBaCo4−xyZnxAlyO7 (x=0,1,2, y=0,1) were investigated. Using AC-susceptibility and DC-magnetometry, magnetic transitions (Tfs) were found for all four compositions in the range 50-3 K. The data from the AC measurements proved to be frequency dependent: Tf increases with higher frequencies. An energy-loss in the magnetic coupling, indicated as contributions in the imaginary part of the magnetic susceptibility (χ″), was seen for every compound and its maximum appeared just below the maximum χ′. Modelling the data with Arrhenius-, Vogel-Fulcher-, and the power-law made it possible to relate the four compounds to spin-glass materials. The Casimir-du Pré relation was used to extract average relaxation times at Tf. The DC magnetisations clearly show differences between field-cooled and zero-field-cooled measurements. None of the compounds exhibit any metamagnetic properties up to 8 T. A new method is presented to calculate the saturation fields using DC data. Relaxation measurements on three compounds indicate that the systems relax very fast, in contrast to spin-glasses. Aging does not affect the fast relaxations. The compounds are interpreted as disordered anti-ferromagnets with spin-glass features.  相似文献   

9.
Low field dc magnetic susceptibility measurements on amorphous YFe2 show a distinct cusp-like peak at TS.G. = 58 K. This result, together with earlier Mőssbauer and neutron scattering measurements, indicates that a true thermodynamic spin-glass transition occurs at TS.G.. In addition, susceptibility and coercive field data are presented which strongly suggest a magnetic freezing or blocking temperature near T = 20 K. This is the first time these two magnetic phenomena have been observed in the same magnetic system.  相似文献   

10.
Orthorhombic LiMnO2 exhibits complex magnetic behavior. In addition to short- and long-range antiferromagnetic ordering, we observed spin-glass behavior in the reported temperature regime of long-range antiferromagnetic ordering. Lithium extraction from LiMnO2 further complicates its magnetic behavior. A broad maximum of susceptibility at ≈360 K, characteristic of well-ordered LiMnO2, disappears upon electrochemical delithiation to Li0.39MnO2, indicating that two-dimensional ordering on the folded triangular Mn lattice in LiMnO2 is destroyed as the cation sublattice begins to transform to a spinel. Spin-glass behavior is, however, observed in Li0.39MnO2 as well. Compared to conventionally prepared spinel LiMn2O4, a lower degree of frustration is deduced, which is attributed to incomplete spinel ordering in the early stages of the cycling-induced transformation. In addition, the fraction of Mn ions occupying tetrahedral sites during the spinel transformation has been quantitatively determined for the first time, using magnetic susceptibility data. The results, surprisingly, support the existence of low-spin Mn ions on tetrahedral sites in the electrochemically transformed spinel.  相似文献   

11.
The elastic properties and the generalized-stacking-fault-energy (GSFE) in MeO (Me = Mg, Ca) under different pressures have been calculated using the first principle calculations. In the anisotropic elasticity theory approximation, by using the Foreman’s method, the core structure and Peierls stress of $\tfrac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}We report structural, DC magnetization, detailed linear/non-linear AC susceptibility, (with applied frequency and amplitude) isothermal and thermoremanent magnetization (TRM) behavior for RuSr2Y1.5Ce0.5Cu2O10 (YRu-1222) magneto-superconductor to understand its complex magnetism. Studied sample is synthesized through the novel solid state high pressure (6?GPa) high temperature (1450?°C) (HPHT) technique. The compound is crystallized in tetragonal structure with space group I4/mmm (No.?139). DC magnetic susceptibility shows that studied YRu-1222 is magneto-superconducting with Ru spins magnetic ordering at around 110?K and superconductivity (SC) in the Cu-O2 planes below ?~?30?K. Frequency and field dependent detailed AC magnetic susceptibility measurements confirms the spin-glass (SG) behavior with homogeneous/non-homogeneous ferromagnetic (FM) clusters in this system. Variation of cusp position with applied AC frequency follows the famous Vogel-Fulcher law, which is commonly accepted feature for spin-glass (SG) system with homogeneous/non-homogeneous ferromagnetic clusters embedded in spin-glass (SG) matrix. Above the freezing temperature (T f ), first and third harmonics AC susceptibility analysis indicated possibility of the co-existence of spin cluster ferromagnetism with superparamagnetism (SPM). The M-H loops at low temperature exhibit the ferromagnetic behavior with rather small coercive field (H c ) and remnant magnetization (M r ). Summarily, the magnetic (DC and AC) susceptibility measurements and their analysis have enabled us to unearth the complex magnetism in terms of successive SG-FM-SPM transitions with temperature.  相似文献   

12.
Measurements of magnetic susceptibility χ, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn2GeTe4 compound. It was found that Mn2GeTe4 has a Néel temperature TN of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at Tf≈45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 Å; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V2 and I-III-VI2 ternary semiconductor compounds.  相似文献   

13.
Comparative crystal structure and magnetic properties studies have been conducted on quaternary powder spinel samples LiMn1.82Cr0.18O4 obtained by two different synthesis methods, glycine-nitrate (GN) and ultrasonic spray-pyrolysis (SP). Although both samples possess the same spinel structure of the cubic space group Fd3¯m, their low-temperature magnetic properties display significant differences. While the SP sample undergoes only spin-glass transition at the freezing temperature Tf=20 K, the GN sample possesses more complicated low-temperature magnetic behavior of the reentrant spin-glass type with the Néel temperature TN=42 K and freezing temperature Tf=22 K. High-temperature magnetic susceptibility of both samples is of the Curie–Weiss type with the effective magnetic moments in agreement with the nominal compositions. This fact together with the results of the chemical analysis discards the existence of the diversity in chemical compositions as a possible cause for the observed differences in the low-temperature magnetism. On the other hand, the crystal structure analysis done by the Rietveld refinement of the X-ray powder diffraction data points to the strong influence of the cation distribution on the ground-state magnetism of these systems. An explanation of this influence is proposed within the framework of a collective Jahn–Teller effect.  相似文献   

14.
The magnetic, thermodynamic and electronic structure properties are discussed for the CeNi4Cr compound. The X-ray photoemission spectra (XPS) provide an evidence of a mixed valence behavior with the occupancy of the f states nf=0.89 and their hybridization with the conduction electrons Δ=30 meV. These values reproduce well the magnetic susceptibility χ(T=0), which is enhanced compared to similar CeNi4M (M=Al, B, Cu) compounds. In combination with a slightly increased electronic specific heat coefficient (up to 100 mJ mol−1 K−2), this compound can be classified as being on the border of the heavy fermion and mixed valence behavior. Using a small magnetic field in the χ(T) measurements reveals a presence of magnetically ordered impurity phase, which is easily damped by higher fields and it is shown that the contribution of this phase is minor. The question of the dependence of the electronic specific heat coefficient on the magnetic field is also addressed and the observations agree well with theoretical predictions based on the Anderson model.  相似文献   

15.
We present susceptibility, microwave resistivity, NMR and heat-capacity results for Li1-xZnx(V1-yTiy)2O4 with 0 ? x ? 0.3 and 0 ? y ? 0.3. For all doping levels the susceptibility curves can be fitted with a Curie-Weiss law. The paramagnetic Curie-Weiss temperatures remain negative with an average value close to that of the pure compound Θ≈ - 36 K. Spin-glass anomalies are observed in the susceptibility, heat-capacity and NMR measurements for both type of dopants. From the temperature dependence of the spin-lattice relaxation rate we found critical-dynamic behavior in the Zn doped compounds at the freezing temperatures. For the Ti-doped samples two successive freezing transitions into disordered low-temperature states can be detected. The temperature dependence of the heat capacity for Zn-doped compounds does not resemble that of canonical spin glasses and only a small fraction of the total vanadium entropy is frozen at the spin-glass transitions. For pure LiV2O4 the spin-glass transition is completely suppressed. The temperature dependence of the heat capacity for LiV2O4 can be described using a nuclear Schottky contribution and the non-Fermi liquid model, appropriate for a system close to a spin-glass quantum critical point. Finally an ( x / y , T )-phase diagram for the low-doping regime is presented. Received 16 March 2001 and Received in final form 30 October 2001  相似文献   

16.
In this work, results of X-band ESR spectroscopy, ac-magnetic susceptibility and X-ray powder diffraction measurements on Li1-xNi 1+x O2 (x = 0.02 and x = 0.07) are presented and discussed. While the susceptibility of the compound with x = 0.02 is shown to follow a Curie-Weiss law, with a Weiss temperature of the order of 30 K, the compound with x = 0.07 is found to order ferromagnetically below K. However, an additional anomaly is observed in the magnetic properties of this latter compound at around 240 K. We attribute this anomaly to the presence of macroscopic Ni-rich regions which order ferrimagnetically below this temperature. This phenomenon is different from the bulk ferromagnetism that occurs at much lower temperatures, and allows us to discard earlier suggestions proposed in the literature in which the 240 K anomaly has been considered as denoting an intrinsic phenomenon. Received 14 May 1999 and Received in final form 5 August 1999  相似文献   

17.
A new family of rare earth-rhodium-tin intermetallic compounds, with the representative formula (RE)RhxSny, has been synthesized in single crystal form. The compounds containing the heavier rare earths are superconducting and those with the lighter rare earths are generally magnetic. The compound ErRh1.1Sn3.6 exhibits reentrant superconductivity with Tc = 0.97 K and Tm = 0.57 K as determined from ac magnetic susceptibility measurements. The synthesis and X-ray characterization of the series are described and the results of electrical resistivity, upper critical magnetic field, magnetic susceptibility, specific heat and neutron scattering measurements on the Er compound are given.  相似文献   

18.
In this work, we report the theoretical and experimental investigations on the magnetic and magnetocaloric properties for Gd0.5Pr0.5Al2 compound in different magnetic fields. The magnetization features indicate that Gd0.5Pr0.5Al2 is ferrimagnetic at low temperatures. We also present data from X-ray magnetic circular dichroism (XMCD) experiments for this compound, with which we have confirmed that the magnetic moments of the Pr ions are antiparallel to the magnetic moments of the Gd ions. The magnetocaloric parameters, ΔTS and ΔST, were obtained from calorimetric data and both curves present normal and inverse magnetocaloric effect. A theoretical model for ferrimagnetic coupling, including the crystalline electrical field anisotropy, was used to describe the ΔTS and ΔST experimental results.  相似文献   

19.
μSR spectroscopy down to 40 mK was carried out on PrAu2Si2. This compound and heavy fermion URh2Ge2 are the only stoichiometric spin glasses reported among the tetragonal FT2X2 (F=rare earth or actinide, T=transition metal, X=metalloid) materials. Although bulk measurements on PrAu2Si2 exhibit all the typical features of a canonical spin glass with a freezing temperature of ∼3 K, no evidence for the formation of a frozen spin-glass state was found with μSR. Instead, the data clearly demonstrate that the magnetic moments in PrAu2Si2 remain dynamic down to the lowest temperatures. The discrepancy between these observed dynamics and the spin-glass-like response in bulk measurements is not understood. Analogous measurements on PrAu2Ge2 and PrAu2(Ge0.8Si0.2)2 showed the expected antiferromagnetic signals, demonstrating that in this type of alloy muons detect magnetic properties in the usual manner.  相似文献   

20.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号