首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline Zn1−xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-doped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size ∼60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetism with the saturation magnetic moment of 0.1 emu/g (0.29 μB/Ni2+).  相似文献   

2.
We tried to prepare the bulk dilute ferromagnetic semiconductor (DMS) by mechanical milling (MM). Experimental results were as following: (1) The observation of X-ray diffraction and transmitting electron microscopy showed that the particle diameter of host ZnO powder were reduced to about 10 nm by MM. (2) The MM for the mixtures of V2O5/ZnO or γ-Fe2O3/ZnO realizes the V- or Fe-doped ZnO nano-powders. (3) The values of magnetization under the field of 5 kOe were nearly saturated to 0.8×10−3 to 3×10−3 μB/V-ion for VxZn1−xO (x=0.05, 0.1 and 0.2), and 0.2–0.3 μB/Fe-ion for FexZn1−xO (x=0.05 and 0.1) at room temperature. The above results show that the ferromagnetic DMS powder of VxZn1−xO and FexZn1−xO were successfully prepared by MM method.  相似文献   

3.
Zn1–xFexO (x=0–0.05) nanoparticles were synthesized without a catalyst by a two-step method. Fe was doped into ZnO by a source of metallic Fe sheets in a solid–liquid system at 80 °C, and the Zn1−xFexO nanoparticles were obtained by annealing at 300 °C. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy were used to characterize the structural properties of the as-grown Zn1−xFexO. The optical properties were determined by Infrared and Ultraviolet–visible spectroscopy. The results confirm that the crystallinity of the ZnO is deteriorated due to Fe-doping. XPS results show that there is a mixture of Fe0+ and the Fe3+ in the representative Zn0.95Fe0.05O sample. The optical band gap of Zn1−xFexO is enhanced with increasing of Fe-doping. Room temperature ferromagnetism was observed in all the Fe-doped ZnO samples.  相似文献   

4.
Thin films of Zn1−xMnxO (x=0.01) diluted magnetic semiconductor were prepared on Si (1 0 0) substrates by the sol-gel method. The influence of annealing temperature on the structural, optical and magnetic properties was studied by X-ray diffraction (XRD), atom force microscopy (AFM), photoluminescence (PL) and SQUID magnetometer (MPMS, Quantum Design). The XRD spectrum shows that all the films are single crystalline with (0 0 2) preferential orientation along c-axis, indicating there are not any secondary phases. The atomic force microscopy images show the surfaces morphologies change greatly with an increase in annealing temperature. PL spectra reveal that the films marginally shift the near band-edge (NBE) position due to stress. The magnetic measurements of the films using SQUID clearly indicate the room temperature ferromagnetic behavior, and the Curie temperature of the samples is above room temperature. X-ray photoelectron spectroscopy (XPS) patterns suggest that Mn2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO host. It is also found that the post-annealing treatment can affect the ferromagnetic behavior of the films effectively.  相似文献   

5.
The present work reports ferromagnetism by doping magnetic Mn atoms in the diamagnetic ZnO matrix and the ferromagnetism has been extended up to 640 K in nano-grained Zn0.95Mn0.05O samples. The bulk and nano-grained samples were stabilized in hexagonal crystal structure with space group p63mc. The grain size and lattice strain of the samples were estimated from room temperature XRD spectrum. Surface morphology of the samples was examined at room temperature using SEM picture and EDX spectrum. The ferromagnetism of the bulk material shows enhancement in nano-grained samples, which was mainly due to the solution of Mn atoms into the lattice sites of ZnO by mechanical milling. The enhancement of magnetic moment and ferromagnetic ordering temperature with reduction in grain size has been understood in terms of the core-shell structure and existing theoretical models. The present work also demonstrated the role of surface spin disorder on the enhancement of ferromagnetism in Zn0.95Mn0.05O nanograins.  相似文献   

6.
We report on the defects related room temperature ferromagnetic characteristics of Zn0.95-xMnxLi0.05O (x = 0.01, 0.03, 0.05 and 0.08) thin films grown on glass substrates using reactive magnetron sputtering. By increasing the Mn content, the films exhibited increases in the c-axis lattice constant, fundamental band gap energy, coercive field and remanent magnetization. Comparison of the structural and magnetic properties of the as-deposited and annealed films indicates that the hole carriers, together with defects concentrations, play an important role in the ferromagnetic origin of Mn and Li co-doped ZnO thin films. The ferromagnetism in films can be described by bound magnetic polaron models with respect to defect-bound carriers.  相似文献   

7.
Co-doped ZnO single-crystalline nanorods with 80–100 nm in diameter and 1.5–2 μm in length have been prepared in a simple solution route. X-ray diffraction data and selected area electron diffraction pattern of the diluted magnetic semiconductor nanorods confirm the single crystallinity of Zn1−xCoxO solid solution without impurities of metallic Co or other phases. Magnetic results show that the Zn0.95Co0.05O nanorods exhibit a ferromagnetic characteristic with Curie temperature higher than 380 K. The high-temperature ferromagnetic properties allow this Zn1−xCoxO nanorods potential applications in future spintronic devices.  相似文献   

8.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

9.
Single-phase polycrystalline samples of Zn0.95Fe0.05O having the wurtzite structure and different morphology of particles were obtained using precursor technologies. It was found by electron spin resonance that iron enters the ZnO crystal lattice in the Fe3+ charge state. Magnetic studies revealed that the obtained samples show weak ferromagnetic properties at 300 K. A correlation between the number of oxygen vacancies and the degree of ferromagnetic ordering was found.  相似文献   

10.
Single-phase Zn1−xCoxO (x=0.02, 0.04) powders were synthesized by a simple co-precipitation technique. X-ray diffraction analysis reveals that the Co-doped ZnO crystallizes in a wurtzite structure. The lattice constants of Co-doped ZnO powders decrease slightly when Co is doped into ZnO. Optical absorption spectra show a decrease in the bandgap with increasing Co content and also give an evidence of the presence of Co2+ ions in tetrahedral sites. Raman spectra indicate that Co doping increased the lattice defects and induced another Raman vibration mode around at 538 cm−1, which is an indicator for the incorporation of Co2+ ions into the ZnO host matrix. Magnetic measurement reveals that the Zn1−xCoxO (x=0.02, 0.04) powders clearly exhibit room-temperature ferromagnetic behavior, which makes them potentially useful as building components for spintronics.  相似文献   

11.
Charoite is a hydrous alkali calcium silicate mineral [K4NaCa7Ba0.75Mn0.2Fe0.05(Si6O15)2(Si2O7)Si4O9(OH)·3(H2O)] exhibiting an intense lilac colour related to Mn2+ and Fe3+ colour centres. These ions also contribute to a strong luminescence at ∼585 and 705 nm. This work studies the thermal dependence of these luminescent centres by (i) thermoluminescence (TL) of pre-heated and pre-irradiated charoite aliquots, (ii) by time-resolved cathodoluminescence (TRS-CL) at room and cryogenic temperatures (RT and CT), (iii) by spatially resolved spectra CL under scanning electron microscopy (SRS-CL-SEM) and (iv) by ion beam spectra luminescence (IBL) with H+, H2+ and 4He+ ions at RT and LT. The main peak, ∼585 nm, is linked to a transition 4T1,2 (G)→6A7(S) in Mn2+ ions in distorted six-fold coordination and the emission at ∼705 nm with Fe2+→Fe3+ oxidation in Si4+ lattice sites. Less intense UV-blue emissions at 340 and 390 nm show multi-order kinetic TL glow curves involving continuous processes of electron trapping and de-trapping along with an irreversible phase transition of charoite by de-hydroxylation and lattice shortening of Δa=0.219 Å, Δb=0.182 Å; Δc=0.739 Å. The Si-O stressed lattice of charoite has non-bridging oxygen or silicon vacancy-hole centres, and Si-O bonding defects which seem to be responsible for the 340 nm emission. Extrinsic defects such as the alkali (or hydrogen)—compensated [AlO4/M+] centres could be linked with the 390 nm emission. Large variations in 585 and 705 nm intensities are strongly temperature dependent, modifying local Fe-O and Mn-O bond distances, short-range-order luminescence centres being very resistant under the action of the heavy ion beam of 4He+. The SRS-CL demonstrates strong spatial heterogeneity in the luminescence of the charoite.  相似文献   

12.
The ultrasonic reaction of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (C6H12N4) was investigated by varying the concentration of the reactants, the irradiation time, and the type of sonicator. The morphology, composition, and phase structure of the products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopy. Octahedral zinc oxide (ZnO) micropowders were formed at low concentrations, 0.05 M, of Zn(NO3)2·6H2O and C6H12N4 in both lab-made sonicator and commercial ultrasonic bath. However, at concentrations between 0.1 and 1.0 M Zn(NO3)2-C6H12N4 mainly plate-like zinc hydroxide nitrate hydrate (Zn5(OH)8(NO3)2(H2O)2) resulted with only a small fraction of ZnO, irrespective of the irradiation time employed, highlighting the sensitivity of the system to the concentration of the starting materials. Heat treatment of Zn5(OH)8(NO3)2(H2O)2 at 350 °C in air affords a ZnO phase of irregular morphology. Octahedral ZnO is found to exhibit slightly lower IR absorption and similar UV absorption to that of commercial prismatic hexagonal ZnO, although an extra peak due to small quantities of Zn5(OH)8(NO3)2(H2O)2 is observed.  相似文献   

13.
We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr2+ ions substituting for Zn2+ ions without any detectable secondary phase in as-synthesized Zn0.97Cr0.03O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization Ms as well as an increase of coercivity of H2-annealed Zn0.97Cr0.03O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H2-annealed Zn0.97Cr0.03O:H nanoparticles are almost doubled upon H2-annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy Ho may play an important role in the origin of H2-annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles.  相似文献   

14.
This paper reports the first synthesis of nanocrystalline powders of Co-doped ZnO (i.e. Zn0.9Co0.1O) diluted magnetic semiconductor by a polymerizable precursor method using nitrate salts of Zn and Co and a mixed solution of citric acid and ethylene glycol as a chelating agent and reaction medium, respectively. The polymeric precursors were characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at 723 K. The precursors were calcined at different temperatures of 773, 873, 973, and 1073 K for 1 h to obtain nanocrystalline powders. The morphology and crystalline size of the calcined particles were evaluated by SEM, TEM and Scherrer's equation. The average particle sizes calcined at 773, 873, 973, and 1073 K for 1 h were, respectively, 20, 60, 80, 150 nm, obtained from TEM. The XRD and Fourier transmission infrared (FT-IR) results indicated that the synthesized Zn0.9Co0.1O powders have the pure wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co2+ in substitution of Zn2+. Room temperature magnetization results revealed a ferromagnetic behavior for the Zn0.9Co0.1O powders. Although the specific magnetization seemed to change with the particle size but there was no clear dependency since the largest magnetization was observed in the powders calcined at 873 K (60 nm). Instead, the specific magnetization appeared to show a trend of dependency on the lattice constant c of the wurtzite unit cell.  相似文献   

15.
Nanocrystalline Mn1−xZnxFe2O4 (0.2?x?0.9) was prepared by mechanical alloying of the concerned oxide precursors and subsequent annealing in air and Ar atmosphere, respectively. Milling and annealing in air produces Zn-ferrites (ZnFe2O4) instead of Mn–Zn ferrites as MnO converts to higher oxides at higher oxygen partial pressure and fails to dissolve in the spinel phase. This is confirmed by careful quantitative X-ray diffraction analysis using Rietvelt profile matching and also by the non-saturating paramagnetic nature of the magnetization response with very low saturation level of these spinels milled and annealed in air. On the other hand, single-phase Mn–Zn ferrite results from the identical precursor oxide blend when milling and annealing are carried out under controlled (Ar) atmosphere. The average grain size of the as-milled and annealed powders, measured by Rietvelt refinement, varies between 6–8 and 14–18 nm, respectively. Further investigations performed with Mn0.6Zn0.4Fe2O4 reveal that a careful selection of annealing parameters may lead to an early superparamagnetic relaxation. Therefore, the blocking temperature can be significantly reduced through proper heat treatment schedule to ensure superparamagnetism and negligible hysteresis at low temperature.  相似文献   

16.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

17.
Undoped ZnO and Zn0.9Cr0.1O films were prepared on Al2O3 (0 0 0 1) substrates using the magnetron co-sputtering technique. X-ray diffraction scans show that all films exhibit nearly single-phase wurtzite structure with c-axis orientation. Both chromium doping and growth ambient have a significant impact on the lattice constants and nucleation processes in ZnO film. A large quantity of subgrains (10 nm in size) has been observed on Zn0.9Cr0.1O film grown under Ar + O2, while irregular plateau-like grains 40-50 nm in size were observed on Zn0.9Cr0.1O film grown under Ar + N2. The ultraviolet-visible transmittance and optical bandgap of all films were also examined. The photoluminescence spectra of all films exhibit a broad emission located around 400 nm, which is composed of one weak ultraviolet luminescence and another rather intense near-violet one, as determined by Gaussian peak fitting. The near-violet emission centered on 400 nm might originate from the electron transition between the band tail state levels of surface defects and/or lattice imperfection in the ZnO film.  相似文献   

18.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

19.
Zn0.95−xCo0.05CuxO powders have been synthesized by the sol-gel method and the structural, magnetic and electrical properties of the powders have been investigated. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that the Co ions do not change the ZnO wurtzite structure. Magnetic measurements indicate that Co doping can induce room temperature (RT) ferromagnetism and the addition of Cu to the powders further increases the magnetic moment per Co ion. The effects of the introduction of Cu as an acceptor dopant in the host matrix are further studied using resistance measurements. It is demonstrated experimentally that acceptor doping plays an important role in realizing dominant ferromagnetic ordering in Co doped ZnO powders.  相似文献   

20.
We studied the influence of thermal annealing in oxygen on the physical properties of MOCVD grown Zn1−xMnxO thin layers. Annealing in the 300–1000 °C temperature range modifies both lattice parameters and magnetic properties of the layers. Correlation of the results from X-ray diffraction, EPR studies and Raman spectroscopy indicate a modification of the Mn+2-related features in the ZnO matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号