首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of dipolar interactions on the magnetization behaviors and magnetic properties of the nanocomposite magnets have been studied by micromagnetic simulations. Numerical results show that the dipolar interaction plays an important role during the demagnetization process, especially in the magnets with large soft-phase content vsvs. For the isotropic nanocomposites, the remanence enhancement can be controlled through adjustments of the grain size D   and vsvs. However, the appearance of magnetic vortex state leads to a very low remanence in the magnets with large D   and vsvs. The dependence of coercivity on D   and vsvs can be attributed to the exchange-induced magnetization reversal near the grain boundaries and the low nucleation field of soft phase, respectively. For the anisotropic nanocomposites, the reduced remanence mrmr is equal to 1.01.0 for the magnets with small D   or with low vsvs. However, mrmr decreases with increasing vsvs for the magnet with large D   due to the influence of dipolar interactions. The difference between the calculated coercivity HcHc with and without considering dipolar interaction shows that the dipolar interaction plays a more important role during the magnetization reversal in the soft phase than that in the hard phase. The maximum calculated energy product of the isotropic nanocomposites is only about 40 MGOe due to the conflicting relation between remanence and coercivity, while that of the anisotropic nanocomposites is 112 MGOe. This reminds us that the alignment of hard grain is important to obtain high performance.  相似文献   

2.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

3.
We have investigated the magnetotransport and magnetic properties on polycrystalline samples of Sr2−xLaxFeMoO6 (x=0x=0, 0.2, 0.4, 0.6, 0.8 and 1.0). The magnitude of intergrain tunneling magnetoresistance with low magnetic field of 0.88 T for x=0.2x=0.2 and 0.40.4 samples are as large as 5% and 7% at room temperature and 13% and 10% at 10 K, respectively. The increase of coercivity (HcHc), ratio of remanent magnetization with respect to saturation magnetization (Mr/MsMr/Ms), high saturation fields, and reduction of the saturation magnetization indicate that random disorder of spin orientation is mainly responsible for enhancement of the low-field magnetoresistance for samples with x?0.4x?0.4. Whereas rapid drop of HcHc, Mr/MsMr/Ms, MrMr, and saturation fields for samples with x>0.4x>0.4 signifies the growth of antiphase boundary, which gives rise to lower values of low-field MR.  相似文献   

4.
Fluxmetric and magnetometric demagnetizing factors, NfNf and NmNm, for cylinders along the axial direction are numerically calculated as functions of material susceptibility χχ and the ratio γγ of length to diameter. The results have an accuracy better than 0.1% with respect to min(Nf,m,1-Nf,m)min(Nf,m,1-Nf,m) and are tabulated in the range of 0.01?γ?5000.01?γ?500 and -1?χ<∞-1?χ<. NmNm along the radial direction is evaluated with a lower accuracy from NmNm along the axis and tabulated in the range of 0.01?γ?10.01?γ?1 and -1?χ<∞-1?χ<. Some previous results are discussed and several applications are explained based on the new results.  相似文献   

5.
Generally, in literature, easy-axis single ion anisotropy and easy-axis exchange anisotropy was treated in indistinct way. In this work we propose to perform a comparative study of the effects of these two easy-axis anisotropies on the behavior of the magnetization and the critical temperature (Tc)(Tc) in the 2D classical Heisenberg antiferromagnetic model. In order to study the low-temperature thermodynamics of this model, we should consider the contribution of anisotropic spin waves, using a self-consistent harmonic approximation (SCHA) theory. We compare the predictions of SCHA with numerical simulations on L×LL×L square lattices using Monte Carlo (MC) simulations, which include effects due to all thermodynamically allowed excitations. Our SCHA results are in good agreement with our MC simulations results and have shown that the strong KK limit gives two different Ising-like behavior. In the exchange anisotropic case, the dependence of TcTc on anisotropic parameter KK becomes linear and in the single-ion anisotropic case, TcTc becomes independent of KK. Also, using MC simulations and finite size scaling, we show that the critical exponents in the two anisotropic case are compatible with the 2D Ising values α=0.125α=0.125 and γ=1.75γ=1.75.  相似文献   

6.
7.
8.
9.
We consider the possibility that the soft supersymmetry-breaking parameters m1/2m1/2 and m0m0 of the MSSM are universal at some scale MinMin below the supersymmetric grand unification scale MGUTMGUT, as might occur in scenarios where either the primordial supersymmetry-breaking mechanism or its communication to the observable sector involve a dynamical scale below MGUTMGUT. We analyze the (m1/2,m0)(m1/2,m0) planes of such sub-GUT CMSSM models, noting the dependences of phenomenological, experimental and cosmological constraints on MinMin. In particular, we find that the coannihilation, focus-point and rapid-annihilation funnel regions of the GUT-scale CMSSM approach and merge when Min∼1012 GeVMin1012 GeV. We discuss sparticle spectra and the possible sensitivity of LHC measurements to the value of MinMin.  相似文献   

10.
We study the electrical transport properties of a quantum point contact between a lead and a high Tc superconductor. For this, we use the Hamiltonian approach and non-equilibrium Green functions of the system. The electrical current and the shot noise are calculated with this formalism. We consider dx2−y2dx2y2, dxydxy, dx2−y2+isdx2y2+is and dxy+isdxy+is symmetries for the pair potential. Also we explore the s+−s+ and s++s++ symmetries describing the behavior of the ferropnictides superconductors. We found that for dxydxy symmetry there is not a zero bias conductance peak and for d+isd+is symmetries there is a displacement of the transport properties. From shot noise and current, the Fano factor is calculated and we found that it takes values of effective charge between e and 2e  , this is explained by the diffraction of quasiparticles in the contact. For the s+−s+ and s++s++ symmetries the results show that the electrical current and the shot noise depend on the mixing coefficient, furthermore, the effective electric charge can take values between 0 and 2e, in contrast with the results obtained for s wave superconductors.  相似文献   

11.
A complex symplectic structure on a Lie algebra hh is an integrable complex structure JJ with a closed non-degenerate (2,0)(2,0)-form. It is determined by JJ and the real part ΩΩ of the (2,0)(2,0)-form. Suppose that hh is a semi-direct product g?Vg?V, and both gg and VV are Lagrangian with respect to ΩΩ and totally real with respect to JJ. This note shows that g?Vg?V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of ΩΩ and JJ are isomorphic.  相似文献   

12.
We construct a natural L2L2-metric on the perturbed Seiberg–Witten moduli spaces Mμ+Mμ+ of a compact 4-manifold MM, and we study the resulting Riemannian geometry of Mμ+Mμ+. We derive a formula which expresses the sectional curvature of Mμ+Mμ+ in terms of the Green operators of the deformation complex of the Seiberg–Witten equations. In case MM is simply connected, we construct a Riemannian metric on the Seiberg–Witten principal U(1)U(1) bundle P→Mμ+PMμ+ such that the bundle projection becomes a Riemannian submersion. On a Kähler surface MM, the L2L2-metric on Mμ+Mμ+ coincides with the natural Kähler metric on moduli spaces of vortices.  相似文献   

13.
14.
A curve αα immersed in the three-dimensional sphere S3S3 is said to be a Bertrand curve if there exists another curve ββ and a one-to-one correspondence between αα and ββ such that both curves have common principal normal geodesics at corresponding points. The curves αα and ββ are said to be a pair of Bertrand curves in S3S3. One of our main results is a sort of theorem for Bertrand curves in S3S3 which formally agrees with the classical one: “Bertrand curves in S3S3 correspond to curves for which there exist two constants λ≠0λ0 and μμ such that λκ+μτ=1λκ+μτ=1”, where κκ and ττ stand for the curvature and torsion of the curve; in particular, general helices in the 3-sphere introduced by M. Barros are Bertrand curves. As an easy application of the main theorem, we characterize helices in S3S3 as the only twisted curves in S3S3 having infinite Bertrand conjugate curves. We also find several relationships between Bertrand curves in S3S3 and (1,3)-Bertrand curves in R4R4.  相似文献   

15.
We discuss three Hamiltonians, each with a central-field part H0H0 and a PT-symmetric perturbation igzigz. When H0H0 is the isotropic Harmonic oscillator the spectrum is real for all gg because HH is isospectral to H0+g2/2H0+g2/2. When H0H0 is the Hydrogen atom then infinitely many eigenvalues are complex for all gg. If the potential in H0H0 is linear in the radial variable rr then the spectrum of HH exhibits real eigenvalues for 0<g<gc0<g<gc and a PT phase transition at gcgc.  相似文献   

16.
17.
Motivated by speculations about infrared deviations from the standard behavior of local quantum field theories, we explore the possibility that such effects might show up as an anomalous running of coupling constants. The most sensitive probes are presently given by the anomalous magnetic moments of the electron and the muon, that suggest that αemαem runs 1.00047±0.000181.00047±0.00018 times faster than predicted by the Standard Model. The running of αemαem and αsαs up to the weak scale is confirmed with a precision at the % level.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号