首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on magnetotransport measurements on millimeter-large super-lattices of CoFe nanoparticles surrounded by an organic layer. Electrical properties are typical of Coulomb blockade in three-dimensional arrays of nanoparticles. A large high-field magnetoresistance, reaching up to 3000%, is measured between 1.8 and 10 K. This exceeds by two orders of magnitude magnetoresistance values generally measured in arrays of 3d transition metal ferromagnetic nanoparticles. The magnetoresistance amplitude scales with the magnetic field/temperature ratio and displays an unusual exponential dependency with the applied voltage. The magnetoresistance abruptly disappears below 1.8 K. We propose that the magnetoresistance is due to some individual paramagnetic moments localized between the metallic cores of the nanoparticles, the origin of which is discussed.  相似文献   

2.
We have studied the electron transport and have observed new phenomenon—the positive injection magnetoresistance on heterostructures gallium arsenide/granular film SiO2 with Co nanoparticles and gallium arsenide/granular film TiO2 with Co island layers.  相似文献   

3.
In this study, La0.5Ca0.5MnO3 (LCMO) films, at the boundary between ferromagnetic metallic and charge-ordered antiferromagnetic insulator according to the bulk phase diagram, were epitaxially grown on (0 0 1) SrTiO3 (STO) and SrLaAlO4 (SLAO) substrates by pulsed laser deposition technique. The films were analyzed by X-ray diffraction, magnetization and magnetoresistance measurements. A considerably higher magnetization was measured for 290-nm-thick film on SLAO substrate compared to the film on STO substrate, although both films have the same chemical composition, thickness and epitaxial orientation. The film on SLAO shows a metal-insulator (MI) transition, which occurs at higher temperatures with increasing applied magnetic field, whereas only insulating behavior was observed for the 290-nm-thick film on STO except for the highest applied magnetic field (7 T). In addition, transport measurements were performed and analyzed by Mott's variable range hopping (VRH) model to correlate the resistivity of the films with the Jahn-Teller strain (εJ−T) in the structure.  相似文献   

4.
Giant magnetoresistance was found in DC magnetron sputtering Fe/ITO multilayers. The magnetic properties, electrical properties and magnetoresistance were investigated. A critical temperature is found around 50 K where the temperature dependence of resistivity and magnetoresistance ratio exhibit an abruptly change. The temperature dependence of resistance is found to obey Mott's 1/4 law for low temperature. The max magnetoresistance ratio of 2.0% and 6.7% is found at room temperature and 12.5 K, respectively. The increase of magnetoresistance ratio at low temperature is due to the decrease of spin-mixing effect.  相似文献   

5.
An iron film system, deposited on glass surfaces by thermal evaporation method and quenched with a floating oil layer immediately after the deposition, has been fabricated. The temperature dependence of the resistance and the transversal magnetoresistance (MR) of the iron films have been studied. The experiment shows that, as the temperature decreases, the sample resistance increases first and then drops monotonically, finally it increases again. Furthermore, a crossover of MR from positive to negative is observed as the magnetic field increases. It is proposed that these anomalous phenomena originate from the characteristic microstructure of the samples.  相似文献   

6.
A single artificial grain boundary in La0.67Ba0.33MnO3 (LBMO) thin film has been prepared by depositing the film on a bicrystal substrate using laser ablation technique. We investigated the magnetic field dependence of magnetoresistance and conductance-voltage characteristics of the grain boundary at 77 K. A decrease of nonlinearity of current-voltage characteristics was observed upon application of magnetic field. The results are explained by assuming the presence of two different types of parallel conducting channels (metallic and highly resistive) across the grain boundary. The analysis of the results reveals that the application of magnetic field suppresses magnetic disorders at the grain boundary region and increases metallic conduction channels across the grain boundary. The temperature dependence of the conduction noise of the bicrystal grain boundary was measured at 0 and 1.5 kG magnetic field and compared with a microbridge on the LBMO film having no grain boundary. The presence of the grain boundary was found to enhance noise by one order of magnitude. The noise of a bicrystal grain boundary showed a decrease in the presence of 1.5 kG magnetic field for T<210 K. This decrease of noise confirms that the application of a magnetic field induces more metallic channels across the grain boundary.  相似文献   

7.
A magnetic fringe-field effect has been investigated for a simple bilayer device structure consisting of a Co0.9Fe0.1 film and an epitaxial YBa2Cu3O7−δ (YBCO) film patterned as a microbridge. The resistance of the bridge is measured with a four-probe technique and is found to depend on the orientation of a magnetic field, which is externally applied in the device plane. A maximum (minimum) of the resistance occurs when the magnetic field is applied in parallel (perpendicular) to the bridge axis. The difference between the maximum and the minimum is very large for a small range of temperature below the critical temperature of the YBCO film. The observed features in the resistance are qualitatively explained by vortex motion in the YBCO bridge under the influence of the magnetic fringe-field of the Co0.9Fe0.1 film.  相似文献   

8.
Spin-transfer driven switching was observed in MgO based magnetic tunnelling junctions (MTJ) with tunnelling magnetoresistance ratio of up to 160% and the average intrinsic switching current density (Jc0) down to 2 MA/cm2, which are the best known results reported in spin-transfer switched MTJ nanostructures. Based on a comparison of results both from MgO and AlOx MTJs, further switching current decrease via MgO dual structures with two pinned layers is discussed.  相似文献   

9.
[Co/Gd0.36Co0.64]4/Co multilayers with Co termination layer have been prepared by rf sputtering. They form macroscopic ferrimagnets with a compensation temperature (Tcomp) determined by the thickness ratio of the layers. In low fields the magnetization of Co and Gd–Co layers are along the axis of the applied field. Increasing field makes the moments of both the Co and Gd–Co layers deviate from the axis of the field giving rise to a transition into a twisted state. These magnetic transitions were studied by vibrating sample magnetometer (VSM), magneto-optic Kerr effect and magnetoresistance measurements at various temperatures. The nucleation and evolution of surface- and bulk-twisted magnetic states were also observed in these multilayers.  相似文献   

10.
The microstructures of Co2FeAl and Co2(Cr0.4Fe0.6)Al sputtered films and of their magnetic tunnel junctions (MTJs) have been investigated to discuss the possible reasons for an unexpectedly low tunneling magnetoresistance (TMR). The structure of the Co2FeAl film changed from B2 to L21 with increasing substrate temperature, while that of the Co2(Cr0.4Fe0.6)Al film remained B2 up to 500 °C. The thermodynamically predicted phase separation was not observed in the films. The low TMR values obtained from the MTJs using the Co2FeAl and Co2(Cr0.4Fe0.6)Al films are attributed to the low-spin polarization expected from the low degree of order in these films. The TMR values depend sensitively on the interfacial structure of the tunnel junctions when the degree of order of the film is low.  相似文献   

11.
FeNiN thin films with good soft magnetic properties were synthesized on Si (1 0 0) substrates at 473 K by RF magnetron sputtering. The dependence of phase structure and magnetic properties on nitrogen partial pressure, nickel concentrations, film thickness and substrate temperature were systematically investigated. The phase evolution from α-(Fe,Ni)N to ξ-(Fe,Ni)2N with increase of nitrogen partial pressure was seen. The addition of Ni caused FeNiN films to turn from BCC structure to FCC structure. Clear reproducible striped domains appeared at the film surfaces when XNi=19.6%, which is explained by the high enough perpendicular anisotropy and the small stress in the film. All films show smooth surfaces and good soft magnetic properties compared to corresponding FeN compounds. The magnetic properties depended dramatically on the phase structure. Optimum soft magnetic properties with HC of <1 Oe are obtained between 5.0%?XNi?10.0%.  相似文献   

12.
We report on the transport, magnetotransport and magnetic properties of In0.17Ga0.83As quantum well in GaAs δ-doped by Mn. At low temperatures, the anomalous Hall effect was observed which detects the spin-polarized carriers. Negative magnetoresistance was found at low temperatures, which became positive at high temperature.  相似文献   

13.
The coexistence of large positive and negative low-field magnetoresistance (LFMR) in the ferromagnetic La0.7Ca0.3MnO3 thin films with ordered microcrack (MC) distributions is reported. For the films with the highest linear density of MC, the negative LFMR can be up to −60% and rapidly changes to the positive value of 25% at 200 Oe field with the increase of temperature. We discuss the effect based on the spin-polarized tunneling and inhomogeneous magnetic state induced by the natural formations of MC in the films.  相似文献   

14.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS4. The electrical resistivity increased with decreasing temperature according to the exp(T0/T)1/2, an expression derived from variable range hopping with strong electron-electron interaction. The resistivity under a magnetic field was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio ρ(T,0)/ρ(T,H) is 1.5 for H=90 kOe at 100 K and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. A possible mechanism of the large magnetoresistance is discussed.  相似文献   

15.
The possibility to control magnetic properties via electrical fields is investigated in a piezoelectric actuator/ferromagnetic semiconductor thin film hybrid structure. Using anisotropic magnetoresistance techniques, the magnetic anisotropy and the magnetization orientation within the plane of the ferromagnetic film are measured quantitatively. The experiments reveal that the application of an electrical field to the piezoelectric actuator allows to continuously and reversibly rotate the magnetization orientation in the ferromagnet by about 70°. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present magnetoresistance (MR) measurements performed on quench-condensed granular Ni thin films which are on the verge of electric continuity. In these systems, the electric conductivity is believed to be governed by the resistance between a very small number of grains. The films exhibit sharp resistance jumps as a function of magnetic field. We interpret these findings as being the result of magneto-mechanical distortions that occur in single grains which act as bottlenecks in the dilute percolation network. The observed features provide a unique measure of magnetostriction effects in nano-grain structures as well as being able to shed light on some of the properties of regular granular magnetic films.  相似文献   

17.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

18.
The paper presents an approach to enhance a magnetoresistance (MR) effect in CrO2 powder compact by an oxidization reaction process. An aqueous potassium permanganate (KMnO4) was used to react with the CrO2 particles coated naturally with Cr2O3 layer. The experiment indicates that the strong oxidant can effectively adjust thickness of the natural Cr2O3 layer, and thereby change the surface state of the CrO2 particles. Structural and magnetic properties for the improved CrO2 particles have been characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and SQUID magnetometer. The results exhibit that the magnetotransport behavior of CrO2 particles depends sensitively on the chemical reaction time. An optimal reaction process yields an obvious increase up to −33% in magnetoresistance at a temperature of 5 K for the chemical treated CrO2 powder, compared to MR=-27% for the original CrO2 powder. The mechanism of magnetotransport is assumed to originate from the spin-dependent tunneling in the granular system, which is consistent with our experimental results. The simple chemical approach has a potential to achieve an enhanced magnetoresistance in a metallic particle system by adjusting the surface state of the magnetic nanoparticle.  相似文献   

19.
The magnetic, transport, and optical properties of electron-doped Ca1−xLaxMnO3−δ single crystals with x  ?0.12 were studied. The magnetic measurements show that in single crystals with x=0x=0 and 0.05 the G-type AFM phase with weak FM component is realized and in crystals with x=0.10x=0.10 and 0.12 the G- and C-type AFM phases coexist. The C-type magnetic structure arises at less concentration of La than in polycrystalline samples as a result of oxygen vacancies being additional source of electrons. Under magnetic transitions in the G- and C-type phases, resistivity and magnetoresistance of the doped single crystals have anomalies. Optical absorption in IR range indicates formation of a charge gap in crystals with x=0.10x=0.10 and 0.12 at appearance of the C-AFM and monoclinic phase with orbital/charge ordering. By comparing optical and transport properties, heterogeneous electronic state and its relation with heterogeneous magnetic state are shown.  相似文献   

20.
High-frequency characteristics of CoFeVAlONb thin films were studied. A thin film of Co43.47Fe35.30V1.54Al5.55O9.93Nb4.21 is observed to exhibit excellent magnetic properties; magnetic coercivity of 1.24 Oe, uniaxial in-plane anisotropy field of 66.99 Oe, and saturation magnetization of 19.8 kG. The effective permeability of the film is as high as 1089 and is stable up to 1.8 GHz, and with ferromagnetic resonance over 3 GHz. This film also has very high electrical resistivity of about 628 μΩ cm. These superior properties make it ideal for high-frequency magnetic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号