首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张莹  陆豪杰  杨芃原 《中国化学》2008,26(10):1863-1869
本文建立了以磷酸铵盐为添加剂的基质新系统,增强了磷酸化肽在MALDI正离子模式下的离子化。系统地考察了不同的磷酸盐以及不同的盐浓度对磷酸化肽离子化效率的影响。考察了两种适合于磷酸化肽离子化的基质类型2,5-二羟基苯甲酸和2,4,6-三羟基苯乙酮。用2,5-二羟基苯甲酸作为基质时,当加入10 mM 磷酸氢二铵时,磷酸化蛋白质β-casein的磷酸肽 48FQ[pS]EEQQQTEDELQDK63的离子化效率可以增强5-8倍,当加入10 mM磷酸二氢胺时,磷酸肽的离子化效率可以增强3-4倍。用2,4,6-三羟基苯乙酮作为基质时,当加入5mM磷酸氢二铵时,磷酸化肽的离子化效率比文献报道的最有利于磷酸化肽离子化的基质体系增强了2倍。并探讨了铵根离子和磷酸根离子促进磷酸化肽在MALDI的正离子模式下离子化效率的机理。  相似文献   

2.
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha‐cyano‐4‐hydroxycinnamic acid (α‐CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α‐CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α‐CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α‐CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α‐CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α‐CHCA matrix additive to enhance peptide signals in formalin‐fixed paraffin‐embedded (FFPE) tissues. Further, AmP as part of α‐CHCA matrix could enhance protein identifications and support MALDI MSI‐based proteomic approaches.  相似文献   

3.
Titanium dioxide metal oxide affinity chromatography (TiO2‐MOAC) is widely regarded as being more selective than immobilized metal‐ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO2‐MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO2‐MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non‐phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5‐dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO2‐MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO2‐MOAC showed higher specificity than immobilized gallium (Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for phosphopeptide enrichment. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS), which was more efficient for smaller, singly phosphorylated peptides. Copyright © 2009 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

4.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

5.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) generally shows better mass sensitivity for arginine-terminated peptides than for lysine-terminated peptides, presumed to arise from the higher proton affinity of the guanidine group in arginine. Here, we report a new method for analyzing phosphopeptides in which phosphopeptides are labeled with a novel chemical tag, guanidinoethanethiol (GET), by a beta-elimination/Michael addition before MS analysis. GET labeling converts phosphoserine into guanidinoethylcysteine (Gec) containing a guanidine moiety, along with an increase in mass of 21.1 Da. GET-labeled peptides are detected by MALDI MS with greatly increased peak intensities compared to those of intact phosphopeptides. In particular, GET labeling of lysine-terminated phosphopeptides dramatically increased peak intensity. GET labeling of lysine-terminated phosphopeptides improved sensitivity up to 22 times compared to that of the corresponding aminoethanethiol (AET) labeling, in which AET was used as a labeling tag containing an amino group instead of the guanidine group. These results show the guanidine group plays a very important role in increasing the observed sensitivity of MALDI MS for labeled peptide, derivatized from serine-phosphorylated peptides.  相似文献   

7.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has been used for the discovery of hundreds of novel cell to cell signaling peptides. Beyond its advantages of sensitivity and minimal sample preparation requirements, MALDI MS is attractive for biological analyses as high quality mass spectra may be obtained directly from specific locations within prepared tissue sections. However, due to the large quantity of salts present in physiological tissues, these mass spectra often contain many adducts of cationic salts such as sodium and potassium, in addition to the molecular ion [M + H]+. To reduce the presence of cation adducts in MALDI mass spectra obtained directly from tissues, we present a methodology that uses a slow condensation procedure to enable the formation of distinct regions of matrix/analyte crystals and cation (salt) crystals. Secondary ion mass spectrometric imaging suggests that the salts and MALDI matrix undergo a mutually exclusive crystallization process that results in the separation of the salts and matrix in the sample.  相似文献   

9.
Oligosaccharides (tri- to hexamers) that represent terminal epitopes of O-antigens of Vibrio cholerae O:1, serotypes Ogawa and Inaba, have been studied by negative matrix-assisted laser desorption/ionization time of flight/time-of-flight mass spectrometry (MALDI ToF/ToF MS). The [M - H(+)](-) ions are formed after expulsion of a proton from molecules studied under condition of MALDI MS analysis in the negative mode. Several ammonium salts (chloride, nitrate, hydrogencarbonate and hydrogensulfate) were used as additives to increase the formation of negative ions from saccharides. The most efficient was the addition of ammonium hydrogencarbonate, which increased the amount of [M - H(+)](-) ions more than six times. Between three fragmentation pathways, the new conjugated transfer of electrons within the second downstream unit of oligosaccharides was discovered. Production of these ions, which has not been observed in any other kinds of measurement, distinguishes substances belonging to Ogawa and Inaba serotypes. The negative MALDI ToF/ToF mass spectra are simpler and, at the same time, more informative, as compared with positive and negative electrospray ionization ion trap as well as with positive MALDI ToF/ToF analysis.  相似文献   

10.
Zhou H  Tian R  Ye M  Xu S  Feng S  Pan C  Jiang X  Li X  Zou H 《Electrophoresis》2007,28(13):2201-2215
Large-scale characterization of phosphoproteins requires highly specific methods for the purification of phosphopeptides because of the low abundance of phosphoproteins and substoichiometry of phosphorylation. A phosphopeptide enrichment method using ZrO2 nanoparticles is presented. The high specificity of this approach was demonstrated by the isolation of phosphopeptides from the digests of model phosphoproteins. The strong affinity of ZrO2 nanoparticles to phosphopeptides enables the specific enrichment of phosphopeptides from a complex peptide mixture in which the abundance of phosphopeptides is two orders of magnitude lower than that of nonphosphopeptides. Superior selectivity of ZrO2 nanoparticles for the enrichment of phosphorylated peptides than that of conventional immobilized metal affinity chromatography was observed. Femtomole phosphopeptides from digestion products could be enriched by ZrO2 nanoparticles and can be well detected by MALDI mass spectrometric analysis. ZrO2 nanoparticles were further applied to selectively isolate phosphopeptides from the tryptic digestion of mouse liver lysate for phosphoproteome analysis by nanoliter LC MS/MS (nano-LC-MS/MS) and MS/MS/MS. A total of 248 defining phosphorylation sites and 140 phosphorylated peptides were identified by manual validation using a series of rigid criteria.  相似文献   

11.
李鹏章  王粤博 《化学进展》2012,(9):1785-1793
磷酸化作用是最重要的蛋白质翻译后修饰方式之一,它是蛋白质组学的一个重要分支,在细胞识别、细胞信息传递、基因表达和新陈代谢等方面发挥着重要作用。采用适当方法对磷酸化肽进行分析有助于我们更好地了解生理病理机制。但是直接进行质谱分析时磷酸化肽的信号强度会受到无机盐以及大量非磷酸化肽的抑制,选择性差。为解决这一难题,在质谱分析前要对磷酸化肽进行选择性富集。本文回顾了几种常用的磷酸化肽富集方法,介绍了每种方法的发展状况和常用材料,其中包括固定金属离子亲和色谱法、金属氧化物富集法、强阴阳离子交换色谱法和MALDI靶板富集法。最后总结了各种富集方法的优缺点,对有效的磷酸化肽富集策略进行了前景展望。  相似文献   

12.
Owing to its broad biological significance, the large-scale analysis of protein phosphorylation is more and more getting into the focus of proteomic research. Thousands of phosphopeptides can nowadays be identified using state-of-the-art tandem mass spectrometers in conjunction with sequence database searching, but localizing the phosphate group to a particular amino acid in the peptide sequence is often still difficult. Using 180 individually synthesized phosphopeptides with precisely known phosphorylation sites (p-sites), we have assessed the merits of the Mascot Delta Score (MD score) for the assignment of phosphorylation sites from tandem mass spectra (MS/MS) generated on four different matrix-assisted laser desorption ionization (MALDI) mass spectrometers including tandem time-of-flight (TOF/TOF), quadrupole time-of-flight, and ion trap mass analyzers. The results show that phosphorylation site identification is generally possible with false localization rates of about 10%. However, a comparison to previous work also revealed that phosphorylation site determination by MALDI MS/MS is less accurate than by ESI-MS/MS particularly if several and/or adjacent possible phosphorylation acceptor sites exist in a peptide sequence. We are making the tandem MS spectra and phosphopeptide collection available to the community so that scientists may adapt the MD scores reported here to their analytical environment and so that informatics developers may integrate the MD score into proteomic data analysis pipelines.  相似文献   

13.
Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks were always recorded when common MALDI matrices such as 4-hydroxy-α-cyanocinnamic acid (CHCA) were used. These compounds are mainly those with a benzene-1,3,5-tricarboxamide (BTA) or urea moiety, which are important building blocks to make new functional supramolecular materials. The possible mechanism of the adduct formation was investigated. A shared feature of the compounds studied is that they can form intermolecular hydrogen bonding with matrices like CHCA. The intermolecular hydrogen bonding will make the association between analyte ions and matrix molecules stronger. As a result, the analyte ions and matrix molecules in MALDI clusters will become more difficult to be separated from each other. Furthermore, it was found that analyte ions were mainly adducted with matrix salts, which is probably due to the much lower volatility of the salts compared with that of their corresponding matrix acids. It seems that the analyte-matrix adduct formation for our compounds are caused by the incomplete evaporation of matrix molecules from the MALDI clusters because of the combined effects of enhanced intermolecular interaction between analyte-matrix and of the low volatility of matrix salts. Based on these findings, strategies to suppress the analyte-matrix adduction are briefly discussed. In return, the positive results of using these strategies support the proposed mechanism of the analyte-matrix adduct formation.
?  相似文献   

14.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   

15.
KONG Xiang-Lei 《中国化学》2008,26(10):1811-1815
作为一种新的,易于实现的快速分析方法,纳米金刚石被应用基于基质隔离激光解吸附电离质谱的非共价相互作用的研究中。表面覆盖有“饵分析物”的纳米金刚石被加入到含有“目标分析物”的溶液中,通过离心的方法进行分离,并用水清洗后再利用基质隔离激光解吸附电离质谱进行分析。同时,通过比较加入纳米金刚石前后的溶液的质谱图,亦可得到相关信息。这种平台可应用于分子间非共价相互作用的研究,并可进一步应用于选择性增强的基质隔离激光解吸附电离质谱分析中,一个例子就是表面覆盖聚赖氨酸的纳米金刚石在磷酸化多肽的质谱分析的应用。  相似文献   

16.
We utilized three different types of TiO2 nanoparticles (NPs) namely TiO2‐dopamine, TiO2‐CdS and bare TiO2 NPs as multifunctional nanoprobes for the rapid enrichment of phosphopeptides from tryptic digests of α‐ and β‐casein, milk and egg white using a simplified procedure in MALDI‐TOF‐MS. Surface‐modified TiO2 NPs serve as effective matrices for the analysis of peptides (gramicidin D, HW6, leucine‐enkephalin and methionine‐enkephalin) and proteins (cytochrome c and myoglobin) in MALDI‐TOF‐MS. In the surface‐modified TiO2 NPs‐based MALDI mass spectra of these analytes (phosphopetides, peptides and proteins), we found that TiO2‐dopamine and bare TiO2 NPs provided an efficient platform for the selective and rapid enrichment of phosphopeptides and TiO2‐CdS NPs efficiently acted as the matrix for background‐free detection of peptides and proteins with improved resolution in MALDI‐MS. We found that the upper detectable mass range is 17 000 Da using TiO2‐CdS NPs as the matrix. The approach is simple and straightforward for the rapid analysis of phosphopeptides, peptides and proteins by MALDI‐MS in proteome research.  相似文献   

17.
Protein phosphorylation is one of the most important post-translational modifications (PTM), however, the detection of phosphorylation in proteins using mass spectrometry (MS) remains challenging. This is because many phosphorylated proteins are only present in low abundance, and the ionization of the phosphorylated components in MS is very inefficient compared to the non-phosphorylated counterparts. Recently, we have reported a selective injection technique that can separate phosphopeptides from non-phosphorylated peptides due to the differences in their isoelectric points (pI) [1]. Phosphorylated peptides from α-casein were clearly observed at low femtomole level using MALDI MS. In this work, further developments on selective injection of phosphopeptides are presented to enhance its capability in handling higher sample complexity. The approach is to integrate selective injection with a sample stacking technique used in capillary electrophoresis to enrich the sample concentration, followed by electrophoresis to fractionate the components in preparation for MALDI MS analysis. The effectiveness of the selective injection and stacking was evaluated quantitatively using a synthetic phosphopeptide as sample, with an enrichment factor of up to 600 being recorded. Next, a tryptic digest of α-casein was used to evaluate the separation and fractionation of peptides for MALDI MS analysis. The elution order of phosphopeptides essentially followed the order of decreasing number of phosphates on the peptides. Finally, to illustrate the applicability, the integrated procedure was applied to evaluate the phosphorylation of a highly phosphorylated protein, osteopontin. Up to 41 phosphopeptides were observed, which allowed us to examine the phosphorylation of all 29 possible sites previously reported [2]. A high level of heterogeneity in the phosphorylation of OPN was evident by the multiple-forms of variable phosphorylation detected for a large number of peptides.  相似文献   

18.
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to detect gaseous aldehydes. Among them, two hydrazide (2‐hydroxybenzohydrazide and 3‐hydroxy‐2‐naphthoic acid hydrazide) and two hydrazine reagents [2‐hydrazinoquinoline and 2,4‐dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI‐MS. Results from accurate mass measurements by JMS‐S3000 Spiral‐TOF suggested that protonated ion peaks corresponding to [M + H]+ from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time‐dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI‐MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI‐MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum requires optimized, reproducible methods for handling and deposition of protein samples. Data acquisition in MALDI MS is also a critical issue, since heterogeneity of sample deposits leads to attenuation of ion signals in MALDI MS. In order to improve the robustness and reproducibility of MALDI MS for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard to chromatographic properties; reversed phase (C8, C18, SDB-XC), ion-exchange (anion, weak cation, mixed-phase (SDB-RPS)) and magnetic beads were tested with regard to chromatographic properties; reversed phase (C8) or affinity chromatography (Cu-IMAC). The reproducibility of each sample preparation method was determined by enumeration and analysis of protein signals that were detected in at least six out of nine spectra obtained by three triplicate analyses of one serum sample.A candidate for best overall performance as evaluated by the number of peaks generated and the reproducibility of mass spectra was found among the tested methods. Up to 418 reproducible peaks were detected in one cancer serum sample. These protein peaks can be part of a possible diagnostic profile, suggesting that this sample preparation method and data acquisition approach is suitable for large-scale analysis of serum samples for protein profiling.  相似文献   

20.
In the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) analysis of some quaternary ammonium salts (QASs), very clean spectra of the quaternary ammonium ions were recorded with a strong matrix suppression effect (MSE). The QASs also showed a considerable analyte suppression effect (ASE). It was demonstrated that the MSE and ASE of the QASs can be explained well by the cluster ionization model. According to this model, MALDI ions are formed from charged matrix/analyte clusters. Various analyte ions and matrix ions might coexist in the cluster, and they will compete for the limited number of net charges available. If enough quaternary ammonium ions are present in the cluster, they will take away the net charges, thus resulting in the MSE and ASE. Our results also suggest that ‘the cluster ionization model’ is not in conflict with ‘the theory of ionization via secondary gas‐phase reactions’. The initial MALDI ions produced from charged matrix/analyte clusters will collide with other molecules or ions in the MALDI plume. Depending on the properties of the initial ions and the composition of the MALDI plume, secondary gas‐phase reactions might result from these collisions. The final ions observed are the combined results of ‘cluster ionization’ and ‘ionization via secondary gas‐phase reactions’. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号