首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
The article discusses solutions of the equations of the hypersonic boundary layer on an axisymmetric offset slender body (with a power exponent equal to 3/4), taking account of interactions with a nonviscous flow. It is shown that, in this case, the equations of the boundary layer have solutions differing from the self-similar solution corresponding to flow around a semi-infinite body. The solutions obtained are analogous to solutions for a strong interaction on a plate with slipping and triangular vanes [1–4], but are obtained over a wide range of values of the parameter of viscous interaction. An asymptotic solution is given to the problem with the approach to zero of the interaction parameter.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 41–47, September–October, 1973.The authors thank V. V. Mikhailova for discussion of the work and useful advice.  相似文献   

2.
The problem of boundary layer flow on a nonconducting wall has been considered in [1–3]. Therein, it was assumed that either the problem is self-similar [1], or the solution was found in the form of a power series in a small parameter [2,3]. The objective of these assumptions is to reduce the boundary layer equations to ordinary differential equations. In the present work the problem is solved without making these assumptions. The distribution along the channel length of the frictional resistance and heat transfer coefficients on the wall are obtained, and the variation of these coefficients with the load parameter is studied.  相似文献   

3.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

4.
This study is concerned with the spin-down of a fluid between stationary cones. It follows on from [7], where solutions were obtained for a fluid spinning down between two infinite disks and where it was shown that under various initial conditions the dependence of the velocity on radius and time tends to a universal Kármán stage. In the case of cones the analogous universal stage is not of the Kármán type, which makes possible an experimental check of the applicability of the self-similar boundary layer equations generalizing the Karman equations previously considered in [11–13]. The experiments confirm the conclusions of the theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 37–44, July–August, 1986.In conclusion, the authors wish to thank A. M. Obukhov and F. V. Dolzhanskii for formulating the problem and constructive discussions.  相似文献   

5.
Exact solutions of the boundary layer equations can be obtained in closed form only in rare cases. These generally involve self-similar solutions for which the corresponding ordinary differential equation can be integrated exactly. In this paper solutions of more general form, containing additive functions of the longitudinal x coordinate in the expression's for the stream function and the self-similar variable, are considered in relation to two-dimensional steady boundary layers. This makes it possible to enlarge the class of problems whose solutions are analytic expressions and in a number of cases can be obtained in the form of expressions containing arbitrary functions of x, which makes possible various interpretations of the solution. In order to introduce arbitrary functions into the solutions of the equations of the axisymmetric boundary layer the problem is reduced to an overdetermined system of ordinary differential equations. This method is also capable of being applied more widely.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 45–51, March–April, 1990.  相似文献   

6.
The asymptotic solutions of the self-similar equations of two- and three-dimensional boundary layers have been investigated by many authors (see, for example, [1–3]). In [4, 5], asymptotic solutions were found for non-self-similar equations for two-dimensional flow, and the propagation of perturbations near the external edge of the boundary layer was analyzed. In the present paper, asymptotic solutions are obtained for the non-self-similar equations of a three-dimensional laminar boundary layer of an incompressible fluid. It is shown that the conclusion drawn in [5] — that the boundary conditions can be transferred from infinity to a finite distance from the wall — is also true for three-dimensional flow. The obtained solutions explain the experimentally well-known phenomenon of the conservativeness of the secondary currents. The essence of this phenomenon is that a change in the sign of the transverse (along the normal to a streamline of the external flow) pressure gradient is accompanied by a very rapid change in the direction of the secondary flow near the wall, whereas in the upper layers of the boundary layer the direction remains unchanged for a substantial time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 155–157, September–October, 1979.  相似文献   

7.
Self-similar solutions of three-dimensional boundary-layer equations of an incompressible fluid in ordinary hydrodynamics were considered in [1–3] et al. The present work looks for self-similar solutions of three-dimensional magnetohydrodynamic boundary-layer equations.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4, pp. 10–17, July–August, 1968.  相似文献   

8.
It is shown that the self-similar solutions of the Navier-Stokes and Burnett equations found earlier by the authors [1–9] can be extended to the case of two-dimensional flows of a weakly rarefied gas described by Grad's equations. Examples are given of numerical realization of self-similar solutions for flow in an expanding planar channel. It is found that there are appreciable differences between the behavior of the self-similar solutions of the Navier-Stokes, Burnett, and Grad equations in the neighborhood of a channel wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 88–94, May–June, 1982.  相似文献   

9.
Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–63, January–February, 1973.  相似文献   

10.
The problem of the propagation of a laminar immersed fan jet with swirling was considered in [1–3]. In [1], the jet source scheme was used to find a self-similar solution for a weakly swirling jet. An attempt to solve by an integral method the analogous problem for a jet emanating from a slit of finite size was made in [2]. In [3], the equations of motion for a jet with arbitrary swirling were reduced under a number of assumptions to the equations that describe the flow of a flat immersed jet. This paper gives the numerical solution to the problem of the propagation of a radial jet emanating with arbitrary swirling from a slit of finite size and an analytic solution for the main section of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 49–54, March–April, 1991.  相似文献   

11.
A solution to the problem of local separation of a three-dimensional boundary layer from an arbitrary smooth surface is constructed. Separation takes place along the limiting streamline at the points of which the component of the surface friction (calculated from the boundary-layer equations) that is orthogonal to this streamline has a break. An asymptotic expansion of the solution of the Navier-Stokes equations that describes the flow field in the separation region is found. The conclusions for the two-dimensional and self-similar theory of local separation are generalized to the three-dimensional case.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–47, May–June, 1991.  相似文献   

12.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

13.
The problem of the development of a laminar jet of viscous incompressible fluid with zero excess impulse (the wake of a hydrodynamic motor) was investigated for the first time by Birkhoff and Zarantonello [1], who found a self-similar solution to the dynamical problem for the case of a two-dimensional laminar wake. The problem of the development of turbulent wakes of hydrodynamic motors in the near and far flow regions was solved by Ginevskii [2] on the basis of an integral method. In the present paper, the method of asymptotic expansions is used on the basis of the boundary layer equations to solve nonself-similar problems of the development of laminar jet flows of a viscous incompressible fluid with zero excess impulse. The obtained solution takes into account the influence of the details of the source (finite size of the body and its geometry) and the value of the Prandtl number on the velocity and temperature distribution. In the case of a laminar axi-symmetric wake, a self-similar solution is obtained to the thermal problem, the solution being valid in a wide range of Prandtl numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–33, May–June, 1984.  相似文献   

14.
In the framework of the locally self-similar approximation of the Navier-Stokes equations an investigation is made of the flow of homogeneous gas in a hypersonic viscous shock layer, including the transition region through the shock wave, on wings of infinite span with rounded leading edge. The neighborhood of the stagnation line is considered. The boundary conditions, which take into account blowing or suction of gas, are specified on the surface of the body and in the undisturbed flow. A method of numerical solution of the problem proposed by Gershbein and Kolesnikov [1] and generalized to the case of flow past wings at different angles of slip is used. A solution to the problem is found in a wide range of variation of the Reynolds numbers, the blowing (suction) parameter, and the angle of slip. Flow past wings with rounded leading edge at different angles of slip has been investigated earlier only in the framework of the boundary layer equations (see, for example, [2], which gives a brief review of early studies) or a hypersonic viscous shock layer [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 150–154, May–June, 1984.  相似文献   

15.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

16.
The self-similar problem of free convection near a heated vertical plate was solved for the first time in [1] for the simplest case of a constant wall temperature. In [2], Yang proved the existence of a self-similar solution to the problem of free convection for vertical plates and cylinders on the surfaces of which the temperature has a power-law distribution. In [3], Yang's solution was generalized to the case of free convection near a slender figure of revolution, but also only in the self-similar case of a power-law distribution of the temperature on the wall. In [4], this problem was solved in an extended nonsimilar formulation but by an artificial and not general method similar to Gertler's, the convergence of the approximations being slow. The present paper contains the solution to the problem of free convection near a vertical plate with arbitrary distribution of the temperature or heat flux on its surface. Rigorous application of the method of generalized similitude [5] leads in this case to universal equations that present insuperable computational difficulties, which forces one to use a simplified but fairly general method to solve this class of problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 167–170, May–June, 1980.I thank L. G. Loitsyanskii and E. M. Smirnov for discussing the results and for valuable comments.  相似文献   

17.
There have been many publications devoted to the investigation of the hydrodynamic stability of nonparallel flows on the basis of the modified Orr-Sommerfeld equation [1–4]. Taking into account the additional terms associated with the presence in the flow of a transverse component of velocity and acceleration can lead not only to a significant quantitative discrepancy as compared with calculations based on the usual Orr-Sommer-feld equation but also to qualitatively new results (nonclosure of the neutral curves for flow on a permeable surface in the presence of strong injection [4]). In this paper an asymptotic solution of the Orr-Sommer-feld equation, valid in the outer region of boundary layer flow, is constructed for self-similar gradient flow over a surface (Falkner-Skan flow). The continuity of the eigenvalue spectrum for an unbounded increase in the perturbation propagation velocity is demonstrated on the basis of the solution obtained. For the ordinary Orr-Sommerfeld equation a continuous transition of the spectrum through the value of the perturbation propagation velocity Cr=1 (which coincides with the velocity of the external flow) is impossible [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–173, January–February, 1987.  相似文献   

18.
Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1989.  相似文献   

19.
The theoretical study of nonisothermal flows of magnetizable liquids presents serious matheical difficulties, which are intensified as compared to to the study of normal liquids by the necessity of simultaneous solution of both the hydrodynamics and Maxwell's equations, with corresponding boundary conditions for the magnetic field. Thus, in most cases problems of this type are solved by neglecting the effect of the liquid's nonisothermal state on the field distribution within the liquid, and also, as a rule, with use of an approximate solution for Maxwell's equations and fulfillment of the boundary conditions for the field [1–3]. The present study will present easily realizable practical formulations of the problem which permit exact one-dimensional solutions of the complete system of the equations of thermomechanic s of electrically nonconductive incompressible Newtonian magnetizable liquids with constant transfer coefficients. A common feature of the formulations is the presence of a longitudinal temperature gradient along the boundaries along which liquid motion is accomplished. Plane-parallel convective flows of this type in a conventional liquid and their stability were considered in [4–6].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–133, May–June, 1979.  相似文献   

20.
The flow arising in an incompressible liquid if, at the initial moment of time, a plate of finite length starts to move with a constant velocity in its plane, is discussed. For the case of an infinite plate, there is a simple exact solution of the Navier—Stokes equations, obtained by Rayleigh. The case of the motion of a semiinfinite plate has also been discussed by a number of authors. Approximate solutions have been obtained in a number of statements; for the complete unsteadystate equations of the boundary layer the statement was investigated by Stewartson (for example, [1–3]); a numerical solution of the problem by an unsteady-state method is given in [4]. The main stress in the present work is laid on investigation of the region of the interaction between a nonviscous flow and the boundary layer near the end of a plate. In passing, a solution of the problem is obtained for a wake, and a new numerical solution is also given for the boundary layer at the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–8, March–April, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号