首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A Dissipative particle dynamics (DPD) simulations are performed to study the cooperative self‐assembly of coil–rod–coil triblock copolymers and nanoparticles in solution. The results show that, when the nanoparticle concentration exceeds a given value, the ternary systems can form a novel nanocage composed of two‐end coil‐caps and middle rod‐linkers. The novel nanocage is very similar to the real bird cage and the captured nanoparticles like the bird. It is the first nanocage from the self‐assembly of coil–rod–coil triblock copolymers. This may be used for the release of drugs and fertilizers, or as nanoreactors.

  相似文献   


2.
Summary: Stimuli‐responsive glycopolymer brushes composed of N‐acryloyl glucosamine (AGA) and N‐isopropylacrylamide (NIPAAm) were prepared using RAFT polymerization. The RAFT agent was immobilized on the surface of a treated silicon waver via covalent attachment using the Z‐group. PAGA and PNIPAAm brushes showed a linear increase in brush thickness with the consumption of monomer in solution. The polymers generated in solution confirm the living behavior with the molecular weight increasing linearly with monomer conversion while the molecular weight distribution remains narrow. Additionally, the ability of PAGA brushes to grow further in the presence of NIPAAm reveals the presence of an active RAFT end group indicative of a living system. PAGA and PNIPAAm homopolymer brushes up to 30 nm were grown using this technique. PAGA brushes were utilized for further chain extension to generate stimuli‐responsive brushes with block structures of PAGA and PNIPAAm. The PAGA‐block‐PNIPAAm brushes were found to grow in size with the consumption of NIPAAm. Contact angle measurements confirm the suggested mechanism showing that the second monomer is incorporated between the first layer and the silicon surface as expected using the Z‐group approach.

Structure of the stimuli‐responsive glycopolymer brushes.  相似文献   


3.
Summary: The influence of architecture on ink‐jet printability of polymer solutions is investigated by comparing linear and 6‐arm star PMMA. At comparable concentration and molecular weight, filament formation is much more pronounced for linear PMMA than for star PMMA. Visual examination of filament stretching allows estimation of the involved elongation rates, which are at high voltages sufficiently large for coil‐stretch transition of the chains, suggesting its role in filament formation.

The results obtained in this study suggest a possible role of the coil‐stretch transition of the polymer chains in filament formation.  相似文献   


4.
Dispersion polymerization of n‐butyl acrylate has been performed in a mixture of ethanol and water in the presence of poly(N‐acryloylmorpholine) (polyNAM). These hydrophilic polymer chains are synthesized by the RAFT process and thus incorporate well‐defined chain ends. The dithioester ω‐end group is used as an efficient chain transfer agent under dispersion polymerization conditions to produce hairy poly(n‐butyl acrylate) latex particles. Moreover, pre‐functionalization of the polyNAM chains on the α‐end by a carbohydrate derivative is also achieved to obtain directly functionalized particles according to the same strategy.

  相似文献   


5.
Highly efficient and well‐controlled ambient temperature reversible addition–fragmentation chain transfer (RAFT) polymerization is readily carried out under environmentally friendly mild solar radiation. This discovery has significantly extended studies from man‐made separated‐spectroscopic‐emission UV‐vis radiation (Macromolecules 2006 , 39, 3770) to natural continuous‐spectroscopic‐emission solar radiation for ambient temperature RAFT polymerization.

  相似文献   


6.
The dextran‐allyl isocyanate/poly(N‐isopropylacrylamide) (Dex‐AI/PNIPAAm) hydrogel was designed and prepared by copolymerization of the modified dextran with N‐isopropylacrylamide (NIPAAm). This novel Dex‐AI/PNIPAAm hydrogel is biodegradable and intelligent due to its biodegradable dextran linkage and thermosensitive PNIPAAm moiety. With an increase in dextran content, it exhibits the increased lower critical solution temperature (LCST) and decreased porous microstructure. Also, the thermosensitivity of this hydrogel is also controllable and adjustable depending on the different compositions.

SEM micrographs of the Dex‐AI/PNIPAAm hydrogels.  相似文献   


7.
Poly(2‐alkyl‐2‐oxazoline)s can be regarded as pseudo‐peptides or bioinspired polymers, which are available through living/controlled cationic polymerization and polymer (“click”) modification procedures. Materials and solution properties may be adjusted via the nature of the side chain (hydrophilic‐hydrophobic, chiral, bio‐functional, etc.), opening the way to stimulus‐responsive materials and complex colloidal structures in aqueous environments. Herein, we give an overview over the macromolecular engineering of polyoxazolines, including the synthesis of biohybrids, and the “smart”/bioinspired aggregation behavior in solution.

  相似文献   


8.
Novel π‐conjugated coil–rod–coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self‐assemble into diverse aggregating morphologies including spherical micelles and thin‐layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self‐assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.

  相似文献   


9.
Supramolecular poly(vinyl acetate) PVAc 3‐arms stars were successfully generated by Reversible Addition–Fragmentation chain Transfer (RAFT)‐polymerized chains bearing hydrogen‐bonding heterocomplementary associating units. Chain Transfer Agents (CTA) bearing thymine‐ and diaminopyridine‐based units were first synthesized and proved to mediate efficiently the polymerization of VAc. The binding ability of the chains in solution was then demonstrated by 1H NMR and GPC measurements, proving the formation of the supramolecular stars.

  相似文献   


10.
This communication details the successful synthesis of low polydispersity core cross‐linked star (CCS) polymers via DPE‐mediated polymerisation. We demonstrate the ability to produce poly(methyl methacrylate) and poly(acrylonitrile) CCS polymers that are currently inaccessible via the two most common non‐metal‐based controlled radical polymerisation techniques (NMP and RAFT polymerisations).

  相似文献   


11.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


12.
Well‐defined “smart” block copolymer–protein conjugates were prepared by two consecutive “grafting‐from” reactions via reversible addition–fragmentation chain transfer (RAFT) polymerization. The initiating portion (R‐group) of the RAFT agent was anchored to a model protein such that the thiocarbonylthio moiety was readily accessible for chain transfer with propagating chains in solution. Well‐defined polymer‐protein conjugates of poly(N‐isopropylacrylamide) (PNIPAM) and bovine serum albumin (BSA) were prepared at room temperature in aqueous media. The retained trithiocarbonate moiety on the free end group of the immobilized polymer allowed the homopolymer conjugate to be extended by polymerization of N,N‐dimethylacrylamide. Polyacrylamide gel electrophoresis, size exclusion chromatography, and NMR spectroscopy confirmed the synthesis of the various conjugates and revealed that the polymerizations were well controlled. As expected, the resulting block copolymer–protein conjugates demonstrated thermoresponsive behavior due to the temperature‐sensitivity of the PNIPAM block, as evidenced by turbidity measurements and dynamic light scattering analysis.

  相似文献   


13.
The synthesis of poly(N‐vinylcarbazole)‐based block copolymers functionalized with rhenium diimine complexes or pendant terpyridine ligands is reported. The copolymers are synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization, and they exhibit interesting morphological properties as a result of the phase separation between different blocks. The rhenium complex polymer block may function as a photosensitizer, while the terpyridine‐containing polymer block can be used as the template for nanofabrication by selective deposition of zinc complexes.

  相似文献   


14.
Summary: A novel method combining RAFT polymerization with pulsed‐laser initiation for determining chain‐length dependent termination rate coefficients, kt, is presented. Degenerative chain‐transfer in RAFT enables single‐pulse pulsed‐laser polymerization (SP‐PLP) traces to be measured on systems with a narrow radical distribution that remains essentially unchanged during the experiment. SP‐PLP‐RAFT experiments at different polymerization times allow for determining kt as a function of chain length via classical kinetics assuming chain‐length independent kt.

Single‐pulse pulsed‐laser polymerization trace for BMPT‐mediated RAFT polymerization of butyl acrylate.  相似文献   


15.
In this communication, β‐cyclodextrin modified quantum dots were used as a water‐soluble “supramolecular” cross‐linker (SCL) because of its surface's supramolecular activity. The guest monomer‐loaded SCL (mSCL) can be used to copolymerize with water‐soluble monomers leading to transparent hybrid supramolecular hydrogels. This simple and versatile method opens new venues for the preparation of hybrid supramolecular hydrogels and the host–guest chemistry of cyclodextrins.

  相似文献   


16.
Summary: The debate on the mechanism of dithiobenzoate‐mediated RAFT polymerization may be resolved by including the reaction between a propagating radical and the star‐shaped combination product from irreversible termination into the kinetic scheme. By this step, a highly reactive propagating radical and a not overly stable three‐arm star species are transformed into the resonance‐stabilized RAFT intermediate radical and a very stable polymer molecule. The time evolution of concentrations is discussed for the main‐equilibrium range of CDB‐mediated methyl acrylate polymerization.

Illustration of the novel understanding of the RAFT mechanism in dithiobenzoate‐mediated RAFT polymerization.  相似文献   


17.
Recently, it has been recognized the shape of particles plays an essential role in the design of materials with unique properties. In this study, PLGA non‐spherical microarchitectures, rods and fibers, were fabricated successfully in high yield by single emulsion‐solvent evaporation method in the presence of sodium tripolyphosphate. The assay of PVA residue was carried out and the hydrogen bonds formation was verified as well. The presented data show that viscosity and coagulation agent have a synergistic effect on forming the rod‐ and fiber‐like microarchitectures in the shear response and the formation mechanisms were proposed accordingly.

  相似文献   


18.
A dextran‐based dual‐sensitive polymer is employed to endow gold nanoparticles with stability and pH‐ and temperature‐sensitivity. The dual‐sensitive polymer is prepared by RAFT polymerization of N‐isopropylacrylamide from trithiocarbonate groups linked to dextran and succinoylation of dextran after polymerization. The functionalized nanoparticles show excellent stability under various conditions and can be stored in powder‐form. UV and DLS measurements confirm that the temperature‐induced optical changes and aggregation behaviors of the particles are strongly dependent on pH.

  相似文献   


19.
A new, simple, and effective method for preparing binary patterned brushes by electrodeposition and self‐assembly is presented. The technique involves the use of electrochemistry to immobilize a chain transfer agent (CTA) on a patterned conducting substrate that mediate surface‐initiated polymerization (SIP) through a reversible addition–fragmentation chain transfer (RAFT) process. The non‐electropatterned surfaces were then backfilled with self‐assembly of an atom transfer radical polymerization (ATRP) silane initiator where the polymerization of the next brush was initiated. The use of techniques such as RAFT and ATRP is well known to give a controlled polymerization mechanism, which would be of great advantage in generating binary patterned brushes. FT‐IR imaging was used to analyze these films.

  相似文献   


20.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号