首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A nondestructive method employing Fourier transform infrared (FTIR) microspectroscopy coupled with attenuated total reflectance (ATR) objective for the analysis of histopathological specimens is described. Malignant breast tissue specimens have been analyzed to demonstrate the hypothesis that chemical changes taking place in biological tissue can be reliably and reproducibly identified. This study is the first report to elucidate clear spectral differences between different ductal carcinoma in situ (DCIS) grades. Sixty individual cases of breast carcinoma including DCIS and invasive ductal carcinoma (IDC) and seven cases of normal breast tissues were studied using the FTIR-ATR spectroscopic technique. FTIR analysis of tissue sections has provided distinct spectra that can be used to distinguish between the nuclear grades of DCIS and IDC of the breast. It was concluded that FTIR could objectively and reproducibly discriminate between DCIS and IDC grades without sample destruction. In the future, applications of FTIR approaches should become feasible in the nondestructive express classification of grades and diagnosis of breast carcinoma.  相似文献   

2.
3.
Raman spectroscopy is a powerful technique for detecting peroxo (O2)2– and superoxo (O2) species adsorbed on defect sites of ceria. These sites are probed by reducing CeO2 at high temperature and then chemisorbing oxygen species at low temperature. In the present study, it is shown for the first time that such Raman characterization has to be achieved at very low laser power to avoid formation of oxygen species by photolysis and analyze only the chemisorbed species. Respecting this requirement, the (O2)2– and (O2) species formed on 0.7% Pt/CeO2 compound, and the CeO2 support used to prepare it were compared after reduction for various times and at various temperatures. Superoxo species were more stabilized on reduced 0.7% Pt/CeO2 after short reduction at 773 K than on reduced CeO2. Additionally, the distributions of peroxo species adsorbed on defect sites of Pt/CeO2 and CeO2 were significantly different after long reduction at 773 K in spite of similar amounts. Indeed, less stable species were formed during the reduction of 0.7% Pt/CeO2. These two features revealed that new sites were created during the preparation and reduction of Pt/CeO2 compared to its bare support. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy is an inelastic light scattering technique that is capable of probing biochemical and biomolecular structures and conformations of tissue. This study aims to characterize the in vivo Raman spectroscopic properties of different normal oral tissues in the fingerprint region (800–1800 cm−1) and to assess distinctive biochemical variations of different anatomical regions in the oral cavity. A specially designed fiber‐optic Raman probe with a ball lens was utilized for real‐time, in vivo Raman measurements of various oral tissue sites (i.e. inner lip, attached gingiva, floor, dorsal tongue, ventral tongue, hard palate, soft palate, and buccal). The semiquantitative non‐negativity‐constrained least squares minimization fitting of reference biochemicals representing oral tissue constituents (i.e. hydroxyapatite, keratin, collagen, DNA, and oleic acid) and partial least squares‐discriminant analysis (PLS‐DA) were employed to assess the significance of inter‐anatomical variability. A total of 402 high‐quality in vivo oral Raman spectra were acquired from 20 subjects. The histological characteristics of different oral tissues were found to have influence on the in vivo Raman spectra and could be grossly divided into three major clusterings: (1) buccal, inner lip, and soft palate; (2) dorsal, ventral tongue, and floor; (3) gingiva and hard palate. The PLS‐DA multiclass algorithms were able to identify different tissue sites with varying accuracies (inner lip 83.1%, attached gingiva 91.3%, floor 86.1%, dorsal tongue 88.8%, ventral tongue 83.1%, hard palate 87.6%, soft palate 83.3%, and buccal mucosa 85.3%), bringing out the similarities among different oral tissues at the biomolecular level. This study discloses that inter‐anatomical variability is significant and should be considered as an important parameter in the interpretation and rendering of Raman diagnostic algorithms for oral tissue diagnosis and characterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectroscopy is an advanced chemical analytical technique that has gained significant interest in cancer research, in particular early detection and monitoring of cancer, with added advantages of non-invasive and real-time diagnosis. Recently, studies have shown its sensitivity to monitor chemical changes during cancer progression. This information will lead to identification of chemical markers (molecular fingerprints of chemical composition) that can be used as biological markers. In this study, we used a tumor spheroid model that mimics the characteristics of a non-vascular in vitro tumor model, we used a combination of Raman and multivariate approach to identify chemical changes associated with normal proliferating, hypoxic and necrotic regions of T-47D human breast cancer spheroid model. The results provide evidence that lipids, amide I, III and nucleic acid contents differ significantly in normal, hypoxic and necrotic regions. Principal component analysis loading plots has suggested that normal proliferating region separated with low amide I and high-tryptophan content compared to hypoxic and necrotic regions. These differences observed in three regions might be useful in identification of new spectral markers associated stress faced by each region progressing toward necrosis.  相似文献   

6.
Raman spectroscopy can be used for analysing both mineral and organic phases, thus allowing characterisation of the microbial‐scale geological context as well as the search for possible traces of life. This method is therefore very useful for in situ planetary exploration missions. Compared with the myriad of sample preparation techniques available in terrestrial laboratories, the possibilities for sample preparation during in situ missions on other planetary bodies are extremely limited and are generally restricted to abrasion of rock surfaces or crushing of the target samples. Whereas certain techniques need samples to be prepared in powder form, such as X‐ray diffraction, this kind of preparation is not particularly suitable for optical microscopy and/or Raman spectroscopy. In this contribution, we examine the effects of powdering rock and mineral samples on optical observations and Raman analyses. We used a commercial Raman spectrometer, as well as a Raman laser spectrometer that simulates the instrument being developed for the future ExoMars 2018 mission. The commercial Raman spectrometer documents significant modifications to the spectra of the powdered samples, including broadening of the peaks and shifts in their position, as well as the appearance of new peaks. These effects are caused by localised heating of the sample under the laser beam and amplification of nominal surface effects due to the increase in surface area in finer grain sizes. However, most changes observed in the Raman spectra using the Raman laser spectrometer system are negligible because the relatively large (50 µm diameter) laser spot size produces lower irradiance. Furthermore, minor phases were more easily detectable in the powdered samples. Most importantly, however, this sample preparation method results in the loss of the textural features and context, making identification of potential fossilized microbial remains more problematic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Southern Africa has a rich heritage of hunter‐gatherer, herder and farmer rock art traditions made by using both painted and engraved techniques. Until now, there have been only a handful of studies on the chemical analysis of the paint, as all previous types of analysis required the removal of pigment samples from the sites a practice which has been avoided. Raman spectroscopy is an ideal techniques to analyse the paint non‐destructively and also offers the possibility of in situ work with portable instruments. This article describes the procedures and reports the preliminary results of the first in situ Raman spectroscopic study of rock art in South Africa (also a first worldwide), where we, first, evaluate the capability of a Raman portable instrument in very difficult conditions, second, analyse the paints in order to contribute to a better knowledge of the technology used and, third, evaluate the possible contribution of in situ analyses in conservation studies. The paintings from two different rock art sites were studied. The instrument proved to be highly suitable for in situ analyses in physically very challenging conditions. Most of the pigments and alteration products previously detected under laboratory conditions were identified, thereby giving information on both the pigments and conservation state of the paintings. A layered structure of alteration products and pigment was identified in situ for the first time by controlling the laser power, thereby obtaining the same results as in mapping experiments of cross sections of paint. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This study describes the application of benchtop and portable Raman spectroscopy for the in situ detection of cocaine hydrochloride in clothing impregnated with the drug. Raman spectra were obtained from a set of undyed natural and synthetic fibres and dyed textiles impregnated with the drug. The spectra were collected using three Raman spectrometers: one benchtop dispersive spectrometer coupled to a fibre‐optic probe and two portable spectrometers. Despite the presence of some spectral bands arising from the natural and synthetic polymer and dyed textiles, the drug could be identified by its characteristic Raman bands. High‐quality spectra of the drug could be acquired in situ within seconds and without any sample preparation or alteration of the evidential material. A field‐portable Raman spectrometer is a reliable technique that can be used by emergency response teams to rapidly identify unknown samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Although conventional Raman, surface‐enhanced Raman (SERS) and tip‐enhanced Raman spectroscopy (TERS) have been known for a long time, a direct, thorough comparison of these three methods has never been carried out. In this paper, spectra that were obtained by conventional Raman, SERS (on gold and silver substrates) and TERS (in ‘gap mode’ with silver tips and gold substrates) are compared to learn from their differences and similarities. Because the investigation of biological samples by TERS has recently become a hot topic, this work focuses on biologically relevant substances. Starting from the TER spectra of bovine serum albumin as an example for a protein, the dipeptides Phe–Phe and Tyr–Tyr and the tripeptide Tyr–Tyr–Tyr were investigated. The major findings were as follows. (1) We show that the widely used assumption that spectral bands do not shift when comparing SER, TER and conventional Raman spectra (except due to binding to the metal surface in SERS or TERS) is valid. However, band intensity ratios can differ significantly between these three methods. (2) Marker bands can be assigned, which should allow one to identify and localize proteins in complex biological environments in future investigations. From our results, general guidelines for the interpretation of TER spectra are proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In the present study, Raman spectroscopy has been employed in the discrimination of the saliva of normal subjects from patients with oral submucous fibrosis and oral squamous cell carcinomaat 785‐nm excitation. From the spectral signatures, prominent difference between normal and abnormal group because of variations in metabolic and pathological conditions of the subjects was observed. Principal component analysis coupled with linear discriminant analysis yielded a diagnostic sensitivity of 96.4 and 93.8% and a specificity of 70.2 and 95.7% in the classification of normal from premalignant and normal from malignant, respectively, confirming the efficacy of Raman spectroscopy in the classification of normal and oral abnormalities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The present work exemplifies, over a mural painting from the 14th century, the advantages of an initial exhaustive research using latest generation hand‐held spectrometers (Raman mainly) in order to perform the characterization of valuable objects of cultural heritage. These in‐situ techniques (meaning on‐site and non‐destructive) are very useful to study the pigments and materials, to identify the nature and causes of some of the main sources of deterioration and to examine past repaints. In addition, the in‐situ measurements are of great importance in the selection of micro‐samples for the laboratory analyses. In this particular case, the combination of these results with the chemical imaging analyses in the laboratory (such as Raman and energy dispersive X‐ray spectrometry imaging) allowed the characterization of the mural painting, including, the identification of all restoration works applied in the past. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectroscopy has been effectively applied to clinically differentiate normal and cancerous mucosal tissues. Micro‐Raman spectroscopy provides a tool to better understand the molecular basis for the Raman clinical signal. The objective of the current study was to utilize micro‐Raman spectroscopy to define the molecular/spectral differences between normal and abnormal squamous cell carcinoma (SCC) in oral mucosa (in vitro). Understanding this may help in identifying unique spectra or may be useful for in vivo application of this technology. Micro‐Raman (confocal) spectroscopy was used to obtain molecular images of normal and SCC cells of human oral mucosa. Four fresh flashed‐frozen tumor and four matched normal tongue specimens were studied. The spectra covered a wavenumber range from 300 to 4000 cm−1 with a spectral resolution of 8 cm−1 and a spatial resolution of 1.0 µm. The cells were located within thin sections of tongue mucosa biopsies. The excitation wavelength of 515 nm was used. We were able to obtain Raman images with rich information about the spectroscopic and structural features within the cytoplasm, cell membrane, and cell nuclei. Significant spectral differences were observed between the Raman images of normal and malignant squamous cells. The heterogeneity of tumor cells within the abnormal tissue was also demonstrated. Spectral differences demonstrated between both tissue types have provided important information regarding the origins of specific signals within the cells of each tissue type. In our search for specific spectral biomarkers, we believe that a cell surface protein, greatly upregulated in SCC cells, was discovered at 1583 cm−1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The effectiveness of Raman spectroscopy (using a bench‐top system on standard pigments) for the characterisation of modified lead antimonate yellows was demonstrated in the already published Part I. The knowledge gained is employed here for the study of yellow glazes on genuine Renaissance plates with the aim of identifying non‐invasively lead pyroantimonate compounds by portable micro‐Raman equipment. The investigation was carried out directly on site, at the Victoria and Albert Museum (London, UK) and at the Museo Statale d'Arte Medievale di Arezzo (Arezzo, Italy), combining Raman and X‐ray fluorescence analyses. In addition to the spectral features of both unmodified Naples yellow and Sn‐ and Zn‐modified lead antimonate compounds, the Raman patterns related to partially modified pyrochlore structures were observed. For this reason, the possible Sn‐induced modification of Naples yellow by cassiterite (SnO2), present within the glaze as opacifier was explored on lead antimonate yellow glaze mock‐ups fired at different temperatures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
吴楠楠  里佐威  刘靖尧  欧阳顺利 《中国物理 B》2012,21(10):103101-103101
In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm 2 ·molecule 1 ·sr 1 at 8×10 5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems.  相似文献   

15.
Temperature‐dependent Raman spectra of K2MonO3n+1 (n = 1, 2, 3) crystals up to and above their melting points were recorded, and their vibration modes in solid and molten states were assigned. Basic structural units and the corresponding cluster forms in molten dipotassium monomolybdates, dimolybdates, and trimolybdates were studied by in situ high‐temperature Raman spectroscopic studies together with theoretical calculations, including density functional theory and quantum chemistry ab initio calculation. Anion units of [MoO4]2−, [Mo2O7]2−, and [Mo3O10]2− were shown to principally exist in molten K2MoO4, K2Mo2O7, and K2Mo3O10, respectively. The mechanisms of the microstructural evolution of K2MonO3n+1 (n = 1, 2, 3) crystals while being melted are schematically illustrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrogenated silicon (Si:H) thin films were obtained by plasma‐enhanced chemical vapor deposition (PECVD). Raman spectroscopy was used to investigate the structural evolution in phosphor‐doped n‐type amorphous hydrogenated silicon thin films, which were prepared under different substrate temperatures and gas pressures. Meanwhile, the effect of nitrogen doping on the structure of P‐doped thin films was also investigated by Raman spectroscopy. Moreover, the transition from the amorphous state to the nanocrystalline state of undoped Si:H films deposited through low argon dilution was studied by Raman spectroscopy, X‐ray diffraction, and transmission electron microscopy. The results show that Raman spectroscopy can sensitively detect the structural evolution in hydrogenated silicon thin films deposited under different conditions in a PECVD system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
[Ba(H2O)3](ClO4)2 between 90 and 300 K possesses two solid phases. One phase transition of the first‐order type at: = 211.3 K (on heating) and = 204.6 K (on cooling) was determined by differential scanning calorimetry. The entropy change value (ΔS ≈ 15 Jmol–1 K–1), associated with the observed phase transition, indicates a moderate degree of molecular dynamical disorder. Both, vibrational and reorientational motions of H2O ligands and ClO4 anions, in the high‐temperature and low‐temperature phases, were investigated by Fourier transform far‐infrared and middle‐infrared and Raman light scattering spectroscopies. The temperature dependences of the full‐width at half‐maximum values of the bands associated with ρw(H2O) mode, in both infrared (~570 cm–1) and Raman light scattering (~535 cm–1) spectra, suggest that the observed phase transition is not associated with a sudden change of a speed of the H2O reorientational motions. Ligands reorient fast, with correlation time of the order of several picoseconds, with a mean activation energy value Ea = 5.1 kJ mol–1 in both high and low temperature phases. On the other hand, measurements of temperature dependences of full‐width at half‐maximum values of the infrared band at ~460 cm–1, associated with δd(OClO)E mode, and Raman band at ~1105 cm–1, associated with νas(ClO)F2 mode, revealed the existence of a fast ClO4 reorientation in phase I and in phase II, with the Ea(I) and Ea(II) values equal to 8.0 and 6.5 kJ mol–1, respectively. These reorientational motions of ClO4 are slightly distorted at the TC. Fourier transform far‐infrared and middle‐infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC, which suggested lowering of the crystal structure symmetry. All these experimental facts suggest that the discovered phase transition is associated with small change of H2O ligands and somewhat major change of ClO4 anions reorientational dynamics, and with insignificant change of the crystal structure, too. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Recent research interests in geometrical isomers of astaxanthin (AST) are motivated by their metabolic activities in aquatic animals and human. It has been established that cis‐isomers of AST are selectively absorbed in human plasma during the metabolic process; however, exact absorption mechanism is still unclear. Hence, a detailed investigation of the structural and optical properties of geometrical isomers of AST is required. Among the techniques available for the study of AST and other carotenoids, Raman spectroscopy has been much acclaimed. Raman spectra have been shown to be influenced by the electronic and mechanical confinement effects arising from the conjugated polyene chain of carotenoids. In this work, we present Raman studies of geometrical isomers of AST, along with their optical absorption characteristics. Geometrical isomers of AST were prepared by heating all trans‐AST in solution form, and the isomers were separated using high performance liquid chromatography. Optical absorption spectra of cis‐isomers of AST showed hypsochromic shifts in the main absorption band and formation of new bands at lower wavelengths. A detailed Raman spectral analysis performed on the cis‐isomers of AST showed new modes which have not been observed and accounted for so far. In addition, we demonstrate that the electronic and mechanical confinement effects in the polyene chain of AST play an important role in the Raman spectra of geometrical isomers of AST. It is anticipated that this work will demonstrate that Raman spectroscopy is an important diagnostic tool in distinguishing and identifying the geometrical isomers of AST. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The infrared (IR) spectra of water–ethanol (EtOH) solutions of HCl are measured over a wide range of acid concentration at fixed H2O―EtOH ratios (1 : 1, 1 : 2, and 1 : 40). In these systems, different proton disolvates with (quasi)symmetrical H‐bonds are formed. Their structure and vibrational features are revealed by the density functional theory method coupled with the polarizable continuum model of solvation. In dilute acidic solutions, the Zundel‐type H5O2+ ion is mainly formed. In concentrated HCl solutions, the ions (H2O···H···O(H)Et)+ and (Et(H)O···H···O(H)Et)+ with the quasi‐symmetrical O···H+···O unit having O···O separation <2.45 Å appear. The first ion characterized by the IR‐intensive band around 1800 cm?1 is mainly formed in the 1 : 1 water–ethanol systems. The second ion exists in the 1 : 2 and 1 : 40 water–ethanol systems. Its spectroscopic signatures are the groups of the IR‐intensive bands around 800 and 1050 cm?1. In highly concentrated HCl solutions with the 1 : 40 water–ethanol ratio, a neutral Et(H)O···H+···Cl? complex exists. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In order to gain some understanding of and to characterize the materials used in Byzantine glazed ceramic finds in the Republic of Macedonia, as well as to obtain information on their manufacturing technology, micro‐Raman spectra of 15 representative glazed shards, all dated from 12th to 14th century, were recorded. The elemental composition of the body and glaze of selected shards was obtained by scanning electron microscopy‐energy dispersive X‐ray spectrometry (SEM‐EDXS). At least 17 different minerals in the ceramic body were identified from the Raman spectra, among which were a variety of feldspars (microcline, albite and sanidine) as well as andradite, apatite and forsterite. According to the identified minerals, locations of the used raw materials in the vicinity of the archaeological sites are proposed. There is a good correlation between the polymerization index derived from the Raman spectra and the lead content obtained from the SEM‐EDXS analyses, therefore the firing temperature of the analyzed glazes could be assessed. The SEM‐EDXS analyses showed the presence of different coloring agents (Cu, Co, Cr, Sb) as well as opacifying (Sb) and fluxing (Pb) agents in the glaze matrix. The content of P2O5 in the glaze of one of the shards is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号