首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
吴宪君  徐家跃  张彦 《人工晶体学报》2014,43(10):2611-2614
采用助熔剂固相合成法,合成了BaMgAl10O17∶Eu3+荧光粉,并分析了材料的光学性能,研究了助熔剂对合成温度、晶体结构和发光性能的影响.结果表明,制备的BaMgAl10O17∶Eu3+属于六方晶系.助熔剂固相法合成温度比传统高温固相法合成温度降低了300℃.BaMgAl10O17∶Eu3+荧光粉能被394 nm的紫外光有效激发,其发射主峰位于612 nm,属于占据非对称中心格位Eu3+的5D0→7F2的电偶极(ED)跃迁.在394 nm激发下,BaMgA110O17∶Eu3+荧光粉的色度坐标为(0.655,0.345),这说明助熔剂固相法合成的样品的色纯度较高,光色为橙红色.  相似文献   

2.
利用高温固相法制备了EH3+、Sm3单掺杂及共掺杂的SrIn2O4荧光材料.通过XRD、激发光谱、发射光谱等对SrIn2O4∶ Eu3+、SrIn2O4∶ Sm3+、SrIn2O4∶ Eu3+,Sm3+进行表征.结果表明,SrIn2O4∶ Eu3+在近紫外光395 nm激发下能够有效的产生616 nm的红光发射.在SrIn2 O4∶Sm3+体系中发现,该系列样品适合于407 nm的紫光激发,发射峰位于607 nm.在SrIn2O4∶Eu3+,Sm3+体系中,通过光谱分析发现,基质中存在Eu3和Sm3激活剂之间的相互能量传递过程.该能量传递过程使SrIn2O4∶Eu3+,Sm3+更适合于390~410 nm紫外芯片激发的LED用红色荧光粉.  相似文献   

3.
周江聪  黄烽 《人工晶体学报》2018,47(8):1680-1683
本文通过高温固相法合成了新型的宽带发射Ca2KMg2V3O12:Eu3+荧光粉,并利用X射线粉末衍射仪,荧光光谱仪等表征手段对荧光粉的晶体结构及其发光性能进行了分析;探讨了Ca2KMg2V3O12荧光粉的自激活发光机理和Eu3+掺杂浓度对发光性能的影响.结果表明:所制备的样品为立方晶系Ca2KMg2V3O12晶体.在紫外光的激发下,Ca2KMg2V3O12:Eu3+既表现出[VO4]基团的宽带发射,又表现出Eu3+的特征发射,同时两者之间存在能量传递.Ca2KMg2V3O12:Eu3+荧光粉是一种良好的自激活发光材料,在紫外光激发的白光LED上具有潜在的应用前景.  相似文献   

4.
采用固相法制备了掺杂Eu3+,Yb3+的NaBaPO4下转换荧光粉.在394 nm紫外光激发Eu3+下,获得了对应于Yb3+∶2 F7/2→2F5/2发射的1004 nm的近红外光.测量了样品的可见和近红外荧光光谱以及Eu3+的衰减曲线,验证了Eu3+到Yb3+的能量传递.观测到了样品的下转换过程,并未观测到量子剪裁现象.研究表明:Yb3+的荧光强度和能量传递效率随着Yb3+掺杂浓度的变化而变化,当样品中Eu3+,Yb3+的掺杂浓度都为5;时,具有最强的近红外发光,Eu3+到Yb3+的能量传递效率为67.9;.  相似文献   

5.
采用高温固相法制备了Eu3+掺杂的KMgLa(PO4)2荧光粉.采用X射线衍射技术及光谱技术研究了材料的晶相及发光特性.研究结果显示,少量的Eu3+并未影响KMgLa(PO4)2的晶相;以260 nm紫外光或394 nm近紫外光作为激发源时,KMgLa(PO4)2∶Eu3+都发射红色光,主发射峰位于595 nm,对应Eu3+的5 D0→7F2跃迁发射;随着Eu3+掺杂量的逐渐增大,对应KMgLa(PO4)2∶ Eu3+材料的发射强度随之增大,当掺杂量为0.06Eu3+时,发射强度最大,且存在浓度猝灭现象,对应的临界距离为1.696 nm;材料的CIE参数显示,材料位于红色区域.  相似文献   

6.
乐天  曾庆光  张梅  沙为超  罗坚义  龙拥兵 《人工晶体学报》2012,41(6):1649-1652,1685
采用水热法合成了Tb3+和Eu3+共掺的2ZnO.2.2B2O3.3H2O红色荧光粉。通过固定Eu3+的掺杂浓度为3%(物质的量比:Eu∶Zn=3%),改变Tb3+的掺杂浓度(2%~15%),研究Tb3+掺杂浓度对红色荧光粉晶相结构和光学性能的影响。用X射线衍射和荧光光谱仪对样品的结构和发光性能进行表征,结果表明:随着Tb3+掺杂浓度的升高,样品由晶态向无定形的玻璃态转变;Eu3+的发光强度也逐渐增强;Tb3+与Eu3+之间存在能量传递的过程,且当采用不同的激发波长(220 nm和393 nm)激发时,其能量传递的过程也不一样。  相似文献   

7.
采用高温固相法合成了Ce3+,Tb3+激活的KNaCa2(PO4)2发光材料,并对其发光特性进行了研究.荧光光谱测试表明:Ce3+的加入显著增强了Tb3+的发射强度,观察到Ce3+对Tb3+的发光存在明显的敏化现象,且测得KNaCa2(PO4)2∶xCe3,yTb3+的最佳掺杂浓度为x=0.01,y=0.16.根据Forster-Dexter理论判定KNaCa2(PO4)2∶Ce3+,Tb3+中Ce3+对Tb3+的能量传递属于电偶极-电四极相互作用引起的共振能量传递.研究表明,KNaCa2(PO4)2∶Ce3+,Tb3+材料是一种优良的紫外-近紫外激发白光LED用高亮度绿色发光材料.  相似文献   

8.
采用高温固相法制备纯相Y2( MoO4)3∶Dy3+荧光粉,并对其晶场及发光性质进行研究.晶场分析结果表明:Y3+格位晶场结构近似为对称性很低的C2,因此样品在近紫外区有很强f-f激发峰,适合于近紫外LED芯片.在387 nm激发下,主要发射峰为Dy3+的特征发射487 nm(蓝光,4F9/2→6H15/2)和574 nm(黄光,4F9/2→6H13/2).增大Dy3+掺杂浓度,黄光与蓝光的强度比值(Y/B)随之增大.387 nm激发下,不同Dy3+掺杂浓度荧光粉发射光的色坐标均在白光区域中.以上结果表明Y2( MoO4)3∶Dy3+是一种新型的适于近紫外LED芯片激发的白光荧光粉,发光性能良好.  相似文献   

9.
用水热法制备出GdVO4:Eu3上转换发光材料.对合成样品的发光性能进行研究,探讨了Eu3+掺杂量、pH值及乙二胺四乙酸二钠掺杂量对样品上转换发光性能的影响.结果表明:样品的结构为四方晶系,在793 nm近红外光的激发下,Eu3浓度为12;、pH值为3、乙二胺四乙酸二钠与稀土离子Eu3+掺杂比例为1:1时,GdVO4:Eu3+样品的上转换发光性能最好;且样品的发射光谱由四个发射峰组成,分别位于596 nm、619 nm、650 nm和698 nm处,归属于Eu3的5D0→7(J=1,2,3,4)电子跃迁.  相似文献   

10.
以二氧化锰为微波吸收剂,采用微波辐射法成功合成了CaMoO4∶Eu3+红色发光材料.用X射线粉末衍射仪、扫描电子显微镜、荧光分光光度计分别对样品的物相结构、形貌和发光性质进行了分析和表征.结果表明:所合成的CaMoO4∶Eu3+晶体结构与CaMoO4相似,属四方晶系结构;样品大颗粒呈立方形,尺寸约4~8 μm,是由200 ~ 300nm的类球形颗粒组装而成.样品的激发光谱由位于200 ~ 350 nm的一个宽带和350 ~ 500 nm的一系列尖峰组成,最大激发峰位于305 nm处;发射光谱由位于550 ~750 nm的一系列尖峰组成,最强的发射峰位于617 nm处,归属于Eu3+的5D0→7F2跃迁.当反应时间为40 min,微波功率为中高火,电荷补偿剂Li+的掺杂量为8mol;时,样品的发光强度最大,约为未掺杂电荷补偿剂样品的4倍.  相似文献   

11.
通过化学共沉淀法制备了Sr0.95WO4∶xEu3+∶(0.05-x)Tb3+荧光粉.采用X射线粉末衍射仪、扫描电子显微镜和荧光光谱仪对样品材料的结构、形貌和发光性能进行了表征.分别讨论了在不同反应温度下及稀土离子Eu3+和Tb3+共掺比例变化对荧光粉的发光性能和形貌的影响.结果表明:所得SrWO4∶xEu3+∶(0.05-x)Tb3样品是由无规则棒组成的发光材料,它们在800℃时,发光性能最好;样品在223 nm紫外光的激发下,在543 nm和614 nm处,呈现出两个主要发光中心,分别归属于5D4→7F5和5D0→7F2跃迁,说明稀土离子Eu3+和Tb3具有良好的发光性能,同时随着Eu3和Tb3+掺杂比例的改变,荧光体的发光色度也在不断改变.  相似文献   

12.
首先采用微波辅助共沉淀制备SrCO.∶Eu3+前驱物,然后高温还原得到SrCO3∶Eu2+样品.通过X射线衍射仪(XRD)和荧光光度仪分析样品的结构和发光性能,确定样品的最佳煅烧温度为1100℃,助熔剂硼酸的最佳用量为15;.研究表明,样品的激发图谱由220 ~ 320 nm和400 ~580 nm两个宽带光谱组成;发射图谱位于550~700 nm宽带吸收峰,其特征发射峰值位于610 nm(λex =475 nm),属于红色发光.这种宽带激发和发射的碳酸锶基质的稀土荧光粉可望用于制造荧光玻璃.  相似文献   

13.
系统研究了Ba2Mg(BO3)2∶Eu3荧光粉的高温固相法制备工艺条件,发现在900 ℃C下保温3h制得的样品的发光性能最好.研究了Eu3掺杂浓度对基质晶格环境和发光性质的影响,当Eu3+浓度较低时,荧光粉在594 nm的发射峰强度最大,随着Eu3掺杂浓度的增加,Eu3+偏离对称中心的程度越来越大,当Eu3浓度超过3at;时,荧光粉在613 nm的发射峰强度开始急剧增强,浓度达到3.5at;时,613 nm的发射开始占主导,这是由于晶体结构的扭曲程度导致晶格对称性发生了较大的改变,释放了更多禁戒的5 D0 →7F2电偶极跃迁.制备的橙色荧光粉可以被近紫外InGaN芯片有效激发,应用于白光LED.  相似文献   

14.
李巍  陈文哲  郑婵 《人工晶体学报》2014,43(8):1938-1943
采用溶胶-凝胶法制备了Tb3+/Eu3+共掺ZnGa2O4微晶玻璃,研究了热处理温度对材料显微结构的影响以及不同稀土离子掺杂材料的发光性能.结果表明干凝胶样品在800~900℃温度热处理后可得到透明的含尖晶石结构ZnGaO4微晶玻璃,在1000℃热处理时由于SiO2非晶基体晶化析出三方Zn2SiO4与六方SiO2晶相导致样品失透.在微晶玻璃中具有ZnGa2O4纳米晶到Tb3+与Eu3+的能量传递.在900℃热处理Tb3+/Eu3+∶ZnGa2O4微晶玻璃样品中,Tb3+与Eu3+分别发射绿光和红光,并与ZnGa2O4纳米晶发射的蓝光组合成近白光发射.  相似文献   

15.
利用高温固相法合成了CaAl2B2O7:Eu3+微晶.X射线衍射分析表明我们得到了纯相的CaAl2B2O7基质.样品在近紫外光和蓝光激发下能发出红光.发射光谱的主峰位于614nm,对应于Eu3+的5D0→7F2跃迁.激发光谱中两个主峰位于401nm和471nm,分别与紫外和蓝光LED相匹配.并研究了电荷补偿剂和Eu3+的浓度对样品发光强度的影响.所有掺入电荷补偿剂(Li+,Na+和K+)样品的发光强度都比没有掺入电荷补偿剂的样品高.其中掺入Li+的样品的发光强度最高.Eu3+的最佳浓度为6;.CaAl2B2O7:Eu3+是一种有应用前景的白光LED用红色荧光粉.  相似文献   

16.
采用高温固相法制备了系列蓝绿色Ca7Si2O8Cl6∶Eu2+荧光粉,并对样品进行了XRD分析、发光性能和色参数的测试。结果表明,合成的样品为单相Ca7Si2O8Cl6;在紫外光激发下,样品呈现一个不对称宽峰结构;分别监测这个发射峰,得到一个较宽的激发谱。同时研究了在样品中分别加入Sr2+和F-后荧光粉的激发和发射光谱,得到了这些离子的加入量与样品发光性能的关系,并探究了发生该现象的原因。结果表明,加入Sr2+或F-后可以得到较好的蓝绿色发光材料。  相似文献   

17.
赵文武 《人工晶体学报》2016,45(11):2717-2721
采用高温固相反应法合成了Bi2-xZnB2O7∶xEu3+(x=0.06,0.08,0.10,0.12,0.15)红色发光材料,并对其制备工艺及发光特性进行了研究.利用XRD和SEM等对粉体进行了结构、纯度和形貌表征,同时讨论了烧结温度对其发光性能的影响得出最佳的烧结温度为680℃.在激发波长为465 nm的条件下,材料的发射峰主要位于582nm、596 nm、617 nm、656 nm和704 nm处,分别归属于Eu3+的5D0→7FJ(J=0,1,2,3,4)电子跃迁,其中以在617nm处的Eu3+的5D0→7F2跃迁产生的电偶极跃迁发射为最强.研究了Eu3+离子掺杂浓度对Bi2ZnB2O7∶Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为x=0.1.  相似文献   

18.
采用高温固相法制备了Ba3La1-x-y(PO4)3∶ xDy3+,yEu3+白光荧光粉,并通过XRD和荧光光谱性能分析手段对样品的物相组成、发光性能和发光机理进行了研究.结果表明:由于Eu3+的掺杂影响了Ba3La(PO4)3∶ Dy3+荧光粉的晶体场环境,在Dy3+的6F9/2能级与Eu3+的5D0能级间发生交叉弛豫,并通过能量共振转移,Dy3向Eu3+传递能量,Ba3La1-x-y(PO4)3∶xDy3+,yEu3+荧光粉在350 nm紫外光激发下同时出现了Dy3+和Eu3+的特征发射,发射光谱中增加了红光成分,改善了色温.实验得出Dy3+和Eu3+掺杂浓度分别为0.08和0.06时,荧光粉的发射光最接近于理想白光.  相似文献   

19.
采用草酸根沉淀法制备ZnO∶ Eu3+荧光粉,探讨了Li+对Eu3+的敏化作用,并研究了SiO2的表面包覆对ZnO∶Eu3,Li+荧光粉性能的影响.采用XRD、IR、SEM、PL等分析了样品的物相、形貌及发光性能.结果表明:K+的掺杂能有效的增强Eu3+与ZnO之间的能量传递,提高其发光性能.而表面包覆SiO2使ZnO∶ Eu3+,Li+荧光粉的晶粒间团聚减小,并对其激发光谱产生影响.  相似文献   

20.
采用高温固相法制备了稀土掺杂Sr5(PO4)2SiO4发光材料,研究了样品的发光性能,研究了预烧结温度、烧结温度、烧结时间对样品发光性能的影响.Sr4.975(PO4)2SiO4∶0.025Eu2荧光粉能够被400 nm左右的近紫外光激发,发射光谱受基质品格结构影响呈现双峰发射现象.实验结果表明,预烧结温度选择850℃,烧结温度选择1400℃,烧结时间选择600 min,制得的样品的发光性能最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号