首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

2.
The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO2, CS2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.  相似文献   

3.
Carbon tetraflouoride has been investigated by binary (e,2e) spectroscopy at 1200 eV impact energy. Binding energy spectra (10–60 eV) at azimuthal angles of 0° and 8° are reported and are found to be in quantitative agreement with a previous Green's function calculated spectrum. Momentum distributions corresponding to individual orbitals are also reported and compared with theoretical momentum distributions evaluated using double-zeta quality SCF wavefunctions. Excellent agreement between experimental and theories is found for the strongly bonding 3t2 orbital and the antibonding 4a1 orbital but agreement is less good for the outermost non-bonding orbitals. Intense structure due to molecular density (bond) oscillation is observed experimentally in the region above 1.0 ao?1 in the case of the non-bonding 4t2 orbital. It is also notable that the measured 4a1 momentum distribution exhibits an extremely well-defined “p” character with clear separation between the s and p components. Contour maps of the position-space and momentum-space orbital densities in the F-C-F plane of the molecule are used to provide a qualitative interpretation of the features observed in the momentum distribution. In order to further extend momentum-space chemical concepts to three-dimensional systems, constant density surface plots are also used to give a more comprehensive view of the density functions of the CF8 molecule.  相似文献   

4.
Photoelectron energy distribution curves from solid CO2 have been determined for excitation energies from hv = 14 up to 40 eV using synchrotron radiation. A 1:1 correspondence to the gas-phase photoelectron spectrum is observed for the occupied molecular orbitals. The vertical binding energies EBv (EVAC = 0) and widths (fwhm) of the valence bands of solid CO2 are determined to be 13.0 and 0.95 eV (1πg); 16.7 and 1.1 eV (1πu); 17.6 and 0.85 eV (3σu) and 18.8 and 0.8 eV (4σg) for the individual bands respectively. The partial photoemission cross sections differ importantly from those of the gas phase in exhibiting pronounced maxima at 5.2 eV (1πg), 4.4–5.3 eV (1πu + 3σu) and 4.2 eV (4σg) above the vacuum level, which is attributed to effects of high density of final (conduction-band) states. Further weaker maxima are observed at higher photon energies. Contrary to the case for the gas phase, the resonances are unperturbed in the solid by degenerate autoionizing molecular Rydberg states. The molecular origin of the resonances in the continuum is discussed and related to X-ray absorption spectra, electron-scattering data and to theoretical cross-section calculations. It is shown that the same set of resonances is observed in the different experiments. The resonances occur however at different energies due to different Coulomb interactions. The photoemission results presented provide also a key to the hitherto unexplained optical spectrum of solid CO2 in the VUV range, making possible an assignment of the structures observed to Frenkel-type excitons (hv ≤ 15 eV) and interband transitions (hv ? 15 eV).  相似文献   

5.
The relative intensities for exciting the 1sσg, 2pσu, 2pπu, and 2sσg states of H2 are measured in a 1200 eV noncoplanar symmetric (e,2e) experiment on H2. Momentum distributions are obtained at separation energies corresponding to the various transitions. The ratio of transition probability to the excited states relative to the ground state is strongly dependent on the ion recoil momentum q, having a minimum value of approximately 2% at small q. The excited state cross sections are sensitive to electron correlation effects and the data are compared with calculated cross sections using a configuration interaction wavefunction for H2.  相似文献   

6.
Multireference configuration interaction wave functions with single and double excitations were calculated for the 1Σ+g ground state of the C2 molecule and the excited states of C+2 with symmetries 2Σ+g, 2Σ-u, 2Πu, and 2Πg. The corresponding σg, σu, πu, and πg valence Dyson orbitals were calculated. Most of the density due to the valence electrons is accounted for by three σg, one σu, and one degenerate pair of πu Dyson orbitals. Electron correlation plays an important role in the bond strength of C2 by increasing the occupation of the σg valence orbitals and decreasing the occupation of the σu and πu valence orbitals. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Electron energy loss measurements and concommitant RPAE calculations are reported of the valence-shell dipole excitation spectrum of molecular fluorine. The measured spectrum is dominated by a series of strong features in the 12–16 eV interval which are in accord with X1Σg+1Σu+ bands assigned in a previously reported high-resolution optical study. These features are attributed on basis of the present RPAE calculations to configuration mixing between 1πgnu Rydberg and 3σg→3σu intravalence excitations. A depleted X→Vσ charge-transfer excitation is correspondingly observed at ≈17 eV, in good accord with the calculated values. The appearance of the σ→σ* transition in F2 below the 3σg?1 threshold is in marked contrast to the situation in other light diatomic molecules, in which cases σ→σ* transitions appear as intravalence shape resonances in photoionization continua. Assignments are also provided of weak, irregularly spaced X1Σg+1Πu excitations the origins of which are attributed to configuration mixing between 1πgnu and 1πung Rydberg series.  相似文献   

8.
The momentum distributions of the valence orbitals for water well as the binding energy spectra in the region 10–45 eV have been reinvestigated with a high momentum resolution (≈0.1 a0?1 fwhm) binary (e.2e) spectrometer. The binding energy spectra show considerable satellite structure in the region > 25 eV which is consistent with theoretical predictions of final state configuration interaction (many-body effects) involving the (2a1)?1 hole state. An investigation of the momentum distribution in the satellite region confirms this assignment. This is in accord with a variety of recent theoretical studies and also consistent with earlier experiments. Differences suggested in earlier comparisons between theory and low momentum resolution experiments for the momentum distributions of the 1b1 and 3a1 orbitals have been verified. Several possible theoretical studies are suggested to investigate further this discrepancy between experiment and theory. Bonding effects and thenature of the molecular orbitals of H2O in momentum space are also discussed.  相似文献   

9.
Excitation of the valence shell molecular orbital spectrum of acetylene with Zr Mζ (151.4 eV) radiation shows clearly all four expected bands 1πu (11.4 eV), 3σg (16.8 eV), 2σu (18.8 eV) and 2σg (23.5 eV) with approximately equal intensity in contrast to He or Mg Kα excited spectra. A spectrum of molecular hydrogen can also be obtained with this radiation.  相似文献   

10.
Calculations using the MRD CI method are reported for the ground and low lying excited states of C3. Transitions from the 3σu, 4σg and 1πu MO's into 1πg are considered, as well as the 1πu → 3s Rydberg species and the corresponding ionization, and good agreement with experimental data is obtained where comparison is possible. Potential curves calculated for the ground and (1πu → 1πg) 1Σ+u excited state are discussed.  相似文献   

11.
电子动量谱学(EMS)是在原子、分子和固体物理中研究电子结构的一种强有力的工具,它基于运动学条件完全确定的(e,2e)碰撞电离反应[1-3].本文报告用高分辨电子动量谱仪首次测量得到丙烷门3H8)分子的价轨道电子(252)的动量分布·丙烷(C3Hs)价轨道电子的动量分布实验是  相似文献   

12.
Ab initio SCF and Cl calculations are reported for the C3 molecule using a basis set of double-zeta plus polarization quality. Potential curves are obtained for the symmetric stretch and bending and antisymmetric stretch vibrational coordinates for the ground and 3σu → l πg3,1Πu excited states of this system in order to calculate the intensity distributions for the associated electronic transitions. The calculated T0 value for the 1Πu ← X?1+g transition of 3.03 eV is in quite good agreement with the location of the origin of the 4050 Å (3.06 eV) band system in C3, confirming its previous assignment to this electronic transition; the lifetime of the 1Hu upper state is also obtained in the CI treatment. A value of 2.04 eV is calculated for the corresponding 3Πu ← X?1+g origin, which result in turn suggests that the weak feature starting at 2.10 eV (5900 Å) should be assigned thereto.  相似文献   

13.
Absolute cross sectional measurements are reported of the valence-shell dipole excitation spectrum of HF obtained from suitably calibrated high impact energy, small momentum transfer, electron energy-loss scattering intensities. Detailed assignments are provided of all prominent features observed on the basis of concomitant single- and coupled-channel RPAE calculations. The measured spectrum, obtained at an energy resolution of = 0.06 eV (fwhm) in the = 9 to 21 eV interval, includes a dissociative feature centered at = 10.35 eV assigned as X1Σ+ → (1π?14σ)A1Π, as well as numerous strong, sharp bands in the = 13 to 16 eV excitation energy region. These bands are attributed on basis of the present calculations to Rydberg (1π?1npπ)-valence (3σ?14σ) mixing in X1Σ+1Σ+ excitation symmetry, which gives rise to a long conventional progression, and to strong 1π → nsσ, moderate 1π → ndσ, and weak 1π → npσ Rydberg series in X1Σ+1Π excitation symmetry. A weaker 1π → ndπ Rydberg series also contributes to the spectrum in X1Σ+1Σ+ symmetry. The calculated and measured excitation energies and f numbers, particularly for the X1Σ → (1π?14σ)A1Π, → (1π?13pπ)B1Σ+, → (1π?13sσ)C1Π, and → (3σ?14σ)D1Σ+ transitions, are in good quantitative accord, suggesting that the overall nature of the HF spectrum is generally clarified on basis of the present studies. Finally, tentative assignments are provided of weak features observed above the 1π?1 ionization threshold. As in previously reported joint experimental and theoretical studies of the valence-shell spectrum of F2, high-resolution optical VUV measurements and calculated potential energy curves aid in the assignment and clarification of the HF spectrum.  相似文献   

14.
Vibrationally resolved partial photoionization cross sections of O2 leading to the b4Σ?g and B2Σ?1g(3σ?1g) tonic states have been measured at high resolution in a wide photon energy range from 0.5 eV above threshold to 24.5 eV. The σu shape resonance is observed around 21.5 eV, in fairly good agreement with “one-electron” theoretical predictions. The series of resonances from 19 to 20 5 eV result from an autoionization process with a strong vibrational selectivity, explained by the similar geometries of the resonance states and the b ionic state. The large resonance widths originate from a strong Rydberg-valence orbital mixing Calculations using multichannel quantum defect theory reproduce the most important features.  相似文献   

15.
The electronic probability distribution in momentum space or electron momentum density (EMD) is studied in detail for the first-row homonuclear diatomics. The total density difference (molecule minus constituting atoms)is analyzed in terms of the separate orbital contributions. The nodal structure shown by the orbital EMD is characteristic for the various types of orbital (σ,σ*,=,=*), and is affected, by the amount of s-p hybridization. Directional and isotropic Compton profiles are used to study the bond-oscillation and bond-directional principles. The bond- directional principle does not hold for pe bonding. Spherically averaged EMD differences (SA Δ EMDs) are related to the changes in kinetic energy (ΔT) upon bond formation. The SA ΔEMDs and ΔT are rationalized by considering the different ranges of internuclear distance that are optimal for 2s-2s, 2po-2po and 2po-2po interaction. This leads to a reassessment of the role of the various orbitals in bonding complementing the picture based on orbital Hellmann- Feynman forces.  相似文献   

16.
Bromomethane (CH3Br) and iodomethane (CH3I) have been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 47 eV at azimuthal angles of 0° and 8° for CH3Br and 0° and 6° for CH3I. The separation energy spectra and the electron momentum distributions measured for each of the valence orbitals are compared with theoretical predictions employing SCF wavefunctions and outer valence type and extended 2 ph-TDA Green function calculations. Electron density and momentum density maps have been calculated for all the valence orbitals using the SCF wavefunctions, and they are used to explain trends and contrasts in the electronic structure and bonding properties of these halomethanes in both position and momentum space.  相似文献   

17.
Photoelectron energy distribution curves from solid nitrogen were measured for excitation energies to 40 cV using synchrotron radiation. Partial cross sections for emission from 3σg, 1πu and 2σu derived valence bands show pronounced mauna 3, 4, 2.9 and 3.0 eV above the vacuum levels, interpreted as due to high density of conduction-band final states. These states are related to π*g negative-ion shape resonances.  相似文献   

18.
The electron binding energy spectra and momentum profiles of the valence orbitals of difluoromethane, also known as HFC32 (HFC-hydrofluorocarbon) (CH(2)F(2)), have been studied by using a high resolution (e,2e) electron momentum spectrometer, at an impact energy of 1200 eV plus the binding energy, and by using symmetric noncoplanar kinematics. The experimental momentum profiles of the outer valence orbitals and 4a(1) inner valence orbital are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods with various basis sets. In general, the shapes of the experimental momentum distributions are well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used. However, the result also shows that it is hard to choose the different calculations for some orbitals, including the methods and the size of the basis sets employed. The pole strength of the ionization peak from the 4a(1) inner valence orbital is estimated.  相似文献   

19.
The He (Iα) photoelectron spectra of the four unsaturated oxides 3,4-dihydropyran ( 6 ), γ-pyran ( 7 ), 2, 3-dihydro-1, 4-dioxin ( 9 ) and 1, 4-dioxin ( 10 ) are reported and analysed. Band assignments are based on ab-initio calculations, using the STO-3G basis set. The proposed orbital sequences (with reference to the coordinate systems given in Table 1) are, for the top three orbitals: 6 , π, nσ, nπ; 7 , 3b1(π), 1a2(π), 11a1(σ); 9 , 11b(π), 12a(σ), 11a(π); 10 , 2b3u(π), 1b1g(π), 6ag(σ). Finally the (almost) localized π-orbitals have been computed by the Foster-Boys localization procedure.  相似文献   

20.
The valence shell electronic structure of NH3 is studied in an (e,2e) experiment with symmetric non-coplanar geometry. The momentum distributions obtained for the separate orbitals are compared with those calculated from several approximate wavefunctions. The 3a1 distribution is found to be particularly sensitive to the form of the wavefunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号