首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia HM  Wang ZP  Fan W  Wijaya A  Wang W  Wang ZF 《Lab on a chip》2012,12(1):60-64
We report a hydroelasticity-based microfluidic oscillator that converts otherwise steady laminar flow to oscillatory flow. It incorporates an elastic diaphragm to enhance nonlinearity of the flow. Negative differential flow resistance is observed. High-frequency oscillatory flow is produced passively through interactions among hydrodynamic, elastic and inertial forces, without resorting to external actuators and control equipment. Driven by fluid flow and pressure, this device can operate in either steady laminar flow or oscillatory flow states, or work as a valve. Its applications for flow control and operation, and mixing enhancement are demonstrated.  相似文献   

2.
The chemiluminescent (CL) detection of epinephrine (EP) with lucigenin (Luc) was performed using a micro flow cell fabricated on a silicon chip. A solution of EP was injected into the Luc carrier stream. The Luc solution containing EP and an alkaline solution were successively poured into the flow cell by a pressure-driven flow system. Two types of flow cells were fabricated for estimating the effect of the mixing modes in the flow cells on the intensity of light emission. In flow cell 1, two streams entered through separate inlet ports and merged to flow adjacently. In flow cell 2, a Luc solution containing EP was split up to 36 partial flows by passage through the nozzles, and was injected into the alkaline solution. The intensity of light emission in flow cell 2 increased markedly compared to that in flow cell 1. The detection limit of 8.0 x 10(-7) M for EP in flow cell 2 was a factor of six-times better than that in flow cell 1. The improvement in the sensitivity for EP could be explained in terms of the distortion of laminar flow in flow cell 2.  相似文献   

3.
Series of photographs of the sample flow pattern in the flow cell with a stationary as well as a rotating disk electrode (RDE) were taken with a motor-driven camera. With the stationary electrode, the flow pattern in the cell was mushroom-like. Rotating the electrode generated a secondary fluid motion in the flow cell which manifested itself as vertical circulation of the solution present in the flow cell. A qualitative hydrodynamic explanation of the observed flow patterns is given. Peak broadening effects induced by the RDE in the flow cell were observed only at very fast rotation speeds and high nozzle heights. The response surface of the amperometric detector flow cell with the RDE as a function of the rotation speed and the nozzle height was measured by applying the detector in combination with high-performance liquid chromatography, flow injection analysis and continuous flow analysis. Model curve-fitting calculations indicate that the flow pattern in the flow cell can be laminar or turbulent, depending on the exact cell geometry, rotation speed and nozzle height.  相似文献   

4.
本文以分布广、产量大的速生生物质——毛竹为原料,研究其在H2氛围中、不同反应温度下热解所得产物的产率和分布,并与其在N2氛围中热解的结果进行了比较。结果表明,毛竹在H2气氛中热解,比在N2气氛中更有利于液体产物的生成。两种氛围中温度对液体产物影响的趋势不同,在本文条件下,H2气氛中升高温度始终有利于增加液体产率,使生物质有效转化率提高,在H2中毛竹热解生成甲醇、环丙基甲醇、呋喃甲醛等,这在N2中是不易得到的,但液体产物中含量最高的仍是乙酸。  相似文献   

5.
运用COMSOL软件模拟分析3种流道下的质子交换膜燃料电池输出性能. 在相同的操作条件下,比较了单蛇形流道、交指流道以及混合流道之间的性能差异,详细说明了3种流道下质子交换膜燃料电池输出性能差异的原因. 由模拟结果分析得出,混合流道输出性能最好,交指流道输出性能其次,单蛇形流道输出性能最差;混合流道的排水能力最好,氧气浓度分布的最均匀;混合流道阴极进出口氧气浓度差最小. 模拟结果对质子交换膜燃料电池结构的优化和设计具有重要的指导意义.  相似文献   

6.
A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction now.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocityprofiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction byusing the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation ofpolymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simpleshear flow, extensional flow, vortical flow, and mixed flow respectively.  相似文献   

7.
We have used computational fluid dynamics modeling (CFD) to synchronize the flow conditions in the flow channels of two complementary surface-sensitive characterization techniques: surface plasmon resonance (SPR) and quartz crystal microbalance (QCM). Since the footprint of the flow channels of the two devices is specified by their function, the flow behavior can only be varied either by altering the height of the flow channel, or altering the volumetric rate of flow (flow rate) through the channel. The relevant quantity that must be calibrated is the shear strain on the measurement surface (center and bottom) of the flow channel. Our CFD modeling shows that the flow behavior is in the Stokes flow regime. We were thus able to generate a scaling expression with parameters for flow rate and flow channel height for each of the two devices: f(QCM)=2.64f(SPR)(h(QCM)/h(SPR)(2), where f(QCM) and f(SPR) are the flow rates in the SPR and QCM flow channels, respectively, and h(QCM)/h(SPR) is the ratio of the heights of the two channels. We demonstrate the success of our calibration procedure through the combined use of commercially available SPR and QCM flow channel devices on both a biomolecular interaction system of surface immobilized biotin and streptavidin and a targeted drug delivery model system of biotinylated liposomes interacting with a streptavidin functionalized surface.  相似文献   

8.
Ríos A  Valcárcel M 《Talanta》1991,38(12):1359-1368
An overview of the analytical potential of the hydrodynamic aspects of unsegmented flow systems is presented. Different approaches involving flow manipulation are described: stopped-flow methodologies, intermittent pumping, selecting-diverting carrier (reagent) streams, open-closed flow systems, flow reversal and flow gradient.  相似文献   

9.
《Analytical letters》2012,45(15):2345-2358
A state-of-the-art flow lab-on-a-valve technique is reported incorporating integration of flow devices such as reaction and mixing serpentine coils and confluences into a monolith flow circuit mounted directly on an eight-port selection valve. The potential of the flow circuit manifold or chip-on-valve in combination with multisyringe flow injection analysis is demonstrated by the application to the successful determination of nitrite and nitrate in seawater. Characteristics and further potential of chip-on-valve are discussed. Due to preparation and fabrication by use of computer aided design, this chip design shows great potential for the automation of sophisticated flow networks in compact and robust flow circuits.  相似文献   

10.
We describe and characterize a pumping mechanism that leverages the momentum present in small droplets ejected from a micro-nozzle to drive flow in an open microfluidic device. This approach allows driving flow in a microfluidic device in a regime that offers unique features different to those achievable with typical passive pumping or syringe-pump driven flow. Two flow regimes with specific flow characteristics are described: inertia enhanced passive pumping, in which fluid exchange times in the channel are significantly reduced, and inertia actuated flow, in which it is possible to initiate flow in an empty channel or against natural pressure gradients. Momentum is leveraged to create rapid fluid exchanges, instantaneous flow reversal, filling and mixing inside the microfluidic device.  相似文献   

11.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   

12.
We present a new flow field design, termed convection-enhanced serpentine flow field (CESFF), for polymer electrolyte-based fuel cells, which was obtained by re-patterning conventional single serpentine flow fields. We show theoretically that the CESFF induces larger pressure differences between adjacent flow channels over the entire electrode surface than does the conventional flow field, thereby enhancing in-plane forced flow through the electrode porous layer. This characteristic increases mass transport rates of reactants and products to and from the catalyst layer and reduces the amount of liquid water that is entrapped in the porous electrode, thereby minimizing electrode flooding over the entire electrode surface. We applied this new flow field to a single direct methanol fuel cell and demonstrated experimentally that the new flow field resulted in substantial improvements in both cell performance and operating stability as opposed to the conventional serpentine flow field design.  相似文献   

13.
In order to examine the difference between shear-induced and extensional-induced associating polymer assemblies at the molecular level, Brownian dynamics simulations with the bead-spring model were carried out for model DNA molecules with sticky spots. The radial distribution of molecules overestimates from that in the absence of flow and increases with increasing Weissenberg number in extensional flow, but slightly underestimates without regard to shear rate in shear flow. The fractional extension progresses more rapidly in extensional flow than in shear flow and the distribution of fractional extension at the formation time has a relatively sharper peak and narrower spectrum in extensional flow than in shear flow. In shear flow, the inducement of the assembly mainly results from the progress of the probability distribution of fractional extension. However, in extensional flow, the assembly is induced by both the progress of the probability distribution and increasing the values of the radial distribution.  相似文献   

14.
A new flow transducer for measuring the flow rate of a conducting fluid in a microchannel is reported. In this paper, the measure of flow of such fluid under laminar flow conditions based on the change of electrical admittance is established with the aid of a pair of electrodes parallel to the line of flow in a glass-PDMS microfluidic device. This flow sensor is simple in design and can be integrated to most of the microfluidic platforms. The effect of flow rate of the electrolyte, the frequency of the applied ac voltage, the voltage applied across the detector electrodes, and the conductivity of the electrolyte are varied to optimize for high sensitivity. The optimized values are then used to demonstrate the measurements of very low flow rates (<1 nL s(-1)). This flow sensor can be extended towards the measurement of chemical and biochemical buffers and reagents.  相似文献   

15.
We report flow birefringence observations of polyethylene oxide solutions in a four roll mill where the flow field in the central region of the mill approximates well to that of pure shearing flow. When flow birefringence is observed it is seen to be highly localized within a region close to the “outgoing” asymptotic plane of flow. The phenomenon can be explained in terms of the flow birefringence corresponding to high extension of some polymer chains where the localization is caused by the chains requiring sufficient time in the flow field to become extended. This explanation has important consequences in all “persistently extensional flows” and can explain the origin of previously published results of localized flow birefringence observed for polyethylene solutions in axial compression and axial extensional flows.  相似文献   

16.

In the current study, thermal–hydraulic characteristics of nitrogen gas–water two-phase flow through a plate–pin fin heat sink are investigated experimentally. Water flow through the smooth case, i.e., heat sink without pin fin, is considered as baseline. Four new models of the pin fin with variable longitudinal pitch and pin length having low-to-high and high-to-low arrangements are proposed. They are named for short as LP–LH, LP–HL, PL–LH, and PL–HL. The results indicate that in all heat sinks, the Nusselt number values of the two-phase flow in comparison with those of the single-phase flow are higher, but the friction factor values of the two-phase flow in comparison with those of the single-phase flow are lower. Also, the friction factor and the Nusselt number of both the single-phase flow and the two-phase flow in the heat sinks with pin fin are greater than those in the heat sink without pin fin. The highest values of the Nusselt number are recorded for PL–HL at water mass flow rate of 0.0093 kg s?1 and gas volume flow rate of 0.8 L min?1. At these flow rates in PL–HL, the Nusselt number of the two-phase flow is increased about 45.6% relative to the single-phase flow.

  相似文献   

17.
Obtaining the morphology of two-phase flow field accurately through experiments is very challenging, due to the complexity and the drainage area diversity of particle–fluid two-phase flow. Depending on the particle concentration, size, flow velocity, and so on, the two-phase flow tends to be in a more complex form, known as coupled flow status. Crystallisation process within a crystalliser is a typical engineering application of particle–fluid two-phase flow, and hence, the flow field within a potassium salt crystallizer is implemented to simulate the crystal suspension and to mix flow state during a continuous crystallisation process. Because the two-fluid model treats the particle phase and fluid phase as two distinct continuous media, this simulation model takes the effect of virtual mass force into considerations. The enhanced two-fluid model is then applied to investigate the influencing factors of the coupled flow field between the potassium salt particles and the fluid in the crystalliser under various operating conditions. The results indicated that the stirring speed, the concentration of the feed particles, and the particle size affected the distribution of coupled flow field at different levels and, thus, affected the crystallisation phenomena of a potassium salt. Among those factors, the stirring speed appears to have the most obvious effect on the flow field, as it affects the velocity of the two-phase flow. In the conditions listed in this paper, the minimum stirring speed is roughly 50 rpm to form a stable and circular flow field in the crystallizer, and the maximum particle size is controlled at around 12 mm and the feed particle concentration of roughly 32% to ensure cyclic crystallization. The research method used in this article provides a baseline for the study of the coupled flow field of particle–fluid two-phase flow and its influencing factors. This research also states theoretical guidance for the optimisation of operating conditions in the production and application of potassium salt crystallizer.  相似文献   

18.
The amperometric detector flow cell based on a rotating disk electrode can be used in conjunction with continuous flow analysis as well as with h.p.l.c. The response surface of the detector as a function of flow rate, electrode rotation speed and concentration of electroactive species (hexacyanoferrate(II)) is measured in combination with continuous flow analysis. When the electrode is stationary, the detector behaves as a wall-jet detector. Rotating the electrode results in a completely different hydrodynamic flow pattern in the flow cell. The response becomes independent of the flow rate and is linearly related to the electrode rotation speed. The influence of nozzle height in the flow cell on the detector response in combination with h.p.l.c. is described. With certain combinations of nozzle height and rotation speeds, a favourable flow pattern appears to be created in the cell and the sensitivity is increased considerably.  相似文献   

19.
Abstract

In the temperature range of 500–2500°F, nonequilibrium flow analysis predicted only a small change in pyrolysis gas composition as the gases flow through the char zone. Essentially all of the reactions took place in the temperature range of 2000–2500°F. Comparing nonequilibrium flow with the two limiting cases, the energy absorbed in the char zone for frozen flow was two-thirds that of nonequilibrium flow, and equilibrium flow was about four times that of nonequilibrium flow at the 2500°F level.  相似文献   

20.
Multiphase flow metering with operationally robust, low-cost real-time systems that provide accuracy across a broad range of produced volumes and fluid properties, is a requirement across a range of process industries, particularly those concerning petroleum. Especially the wide variety of multiphase flow profiles that can be encountered in the field provides challenges in terms of metering accuracy. Recently, low-field magnetic resonance (MR) measurement technology has been introduced as a feasible solution for the petroleum industry. In this work, we study two phase air-water horizontal flows using MR technology. We show that low-field MR technology applied to multiphase flow has the capability to measure the instantaneous liquid holdup and liquid flow velocity using a constant gradient low flip angle CPMG (LFA-CPMG) pulse sequence. LFA-CPMG allows representative sampling of the correlations between liquid holdup and liquid flow velocity, which allows multiphase flow profiles to be characterized. Flow measurements based on this method allow liquid flow rate determination with an accuracy that is independent of the multiphase flow profile observed in horizontal pipe flow for a wide dynamic range in terms of the average gas and liquid flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号