首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
By repetitive irradiation of pico- or femtosecond laser pulses on glasses containing silver nanoparticles, dichroitic areas can be produced with different optical properties depending on the actual irradiation parameters. This effect, which is nanoscopically caused by permanent deformation of the initially spherical particles to non-spherical shapes and an additional formation of a halo of very small particles, is studied as a function of polarization and number of the applied pulses using two different laser systems (Ti:sapphire, λ=400 nm, tp=150 fs; Nd:YLF, λ=523.5 nm, tp=4 ps). A very special diffraction grating produced by this local deformation, which has strongly polarization- and wavelength-dependent features, is introduced and discussed. Received: 20 July 2001 / Published online: 10 October 2001  相似文献   

2.
The phase transformations induced in a Ge1Sb4Te7 system by a femtosecond (fs) laser exposure were investigated. The system has a multilayer structure of 15 nm ZnS–SiO2/80 nm Ge1Sb4Te7/100 nm ZnS–SiO2/0.6 mm polycarbonate substrate. The morphology and contrast of marks formed in both amorphous and crystalline backgrounds by single fs pulses were characterized using an optical microscope. X-ray diffraction was applied to identify the crystal structures formed by single fs shots. Phase-reversible transformations in the system have been achieved through careful adjustment of the laser fluence. The mechanism of reversibility triggered by fs laser pulses is discussed. The feasibility of phase-change reversible optical recording with the active Ge1Sb4Te7 layer using single fs pulses with a duration of 400 fs within well-defined fluence and pulse energy windows is therefore demonstrated. Our work also demonstrates that it is possible to record and retrieve data rapidly in the Ge1Sb4Te7 film within a conventional optical disk structure using non-amplified laser systems as laser sources. PACS 78.47.+p; 61.80.Ba; 47.20.Hw; 81.40.Ef  相似文献   

3.
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.  相似文献   

4.
A 50 cm silver coated hollow fiber with inner diameter of 250 μm and filled with argon has been used to compress optical pulses from a Ti:sapphire laser at 800 nm. Input pulses with energy of 250 μJ and duration of 110 fs were used and compressed pulses with energy of 220 μJ and duration of 20 fs were generated by using a prism compressor. Numerical and experimental results are compared. There is good agreement between the measured beam diameters of the hollow-fiber output pulse and the calculated values obtained from propagation of the HE11 mode into free space. For comparison, a similar uncoated fused-silica hollow fiber was also used to obtain 20 fs compressed pulses with an energy of 190 μJ. Received: 7 September 2002 / Published online: 26 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-780/492-1811, E-mail: mohebbi@ee.ualberta.ca  相似文献   

5.
Laser cleaning of polymer surfaces   总被引:2,自引:0,他引:2  
We have investigated the removal of small spherical particles from polymer surfaces by means of 193-nm ArF and 248-nm KrF laser light. Polystyrene (PS) particles with diameters in the range of 110 nm to 1700 nm and silica particles (SiO2) with sizes of 400 nm and 800 nm are successfully removed from two different substrates, polyimide (PI) and polymethylmethacrylate (PMMA). Experiments were performed in air (23 °C, relative humidity 24–28%) and in an environment with a relative humidity (RH) of about 90%. Received: 13 July 2000 / Accepted: 14 July 2000 / Published online: 9 November 2000  相似文献   

6.
The timescale for the coupling of electronic and vibrational excitation in isolated fullerenes is determined by recording positive ion time-of-flight mass spectra on excitation with ultrashort laser pulses at 790 nm of the same fluence but different pulse durations. The coupling leads to the onset of a delayed ionisation “tail” on the parent fullerene ion peak. This occurs for a pulse duration of 500-1000 fs, depending on laser fluence. Received 20 October 2000  相似文献   

7.
We have performed a comparative study of UV laser ablation of SrTiO3 with nanosecond- and sub-picosecond sources, respectively. The experiments were performed with lasers at a wavelength of 248 nm and pulse durations of 34 ns and 500 fs. Femtosecond ablation turns out to be more efficient by one order of magnitude and eliminated the known problem of cracking of SrTiO3 during laser machining with longer pulses. In addition, the cavities ablated with femtosecond pulses display a smoother surface with no indication of melting and well-defined, sharp edges. These effects can be explained by the reduced thermal shock effect on the material by using ultrashort pulses.  相似文献   

8.
We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ≈100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous. Received: 4 December 2000 / Revised version: 29 March 2001 / Published online: 20 June 2001  相似文献   

9.
Investigation of the process of nanohole formation on silicon surface mediated with near electromagnetic field enhancement in vicinity of gold particles is described. Gold nanospheres with diameters of 40, 80 and 200 nm are used. Irradiation of the samples with laser pulse at fluences below the ablation threshold for native Si surface, results in a nanosized surface modification. The nanostructure formation is investigated for the fundamental (λ = 800 nm, 100 fs) and the second harmonic (λ = 400 nm, 250 fs) of the laser radiation generated by ultrashort Ti:sapphire laser system. The near electric field distribution is analyzed by an Finite Difference Time Domain (FDTD) simulation code. The properties of the produced morphological changes on the Si surface are found to depend strongly on the polarization and the wavelength of the laser irradiation. When the laser pulse is linearly polarized the produced nanohole shape is elongated in the E-direction of the polarization. The shape of the hole becomes symmetrical when the laser radiation is circularly polarized. The size of the ablated holes depends on the size of the gold particles, as the smallest holes are produced with the smallest particles. The variation of the laser fluence and the particle size gives possibility of fabricating structures with lateral dimensions ranging from 200 nm to below 40 nm. Explanation of the obtained results is given on the basis simulations of the near field properties using FDTD model and Mie's theory.  相似文献   

10.
We describe the detection and stabilization of the carrier envelope offset (CEO) frequency of a diode-pumped Yb:KYW (ytterbium-doped potassium yttrium tungstate) femtosecond oscillator that is spectrally centered at 1033 nm. The system consists of a diode-pumped, passively mode-locked femtosecond laser that produces 290 fs pulses at a repetition rate of 160 MHz. These pulses are first amplified, spectrally broadened and temporally compressed to 80 fs, and then launched into microstructured fiber to produce an octave-spanning spectrum. An f-2f nonlinear interferometer is employed with the broadened spectrum to detect and stabilize the CEO frequency through feedback to the pump laser current. These results demonstrate that such a Yb-doped tungstate laser can provide an efficient, compact, high-repetition-rate optical frequency comb with coverage from 650–1450 nm.  相似文献   

11.
We present the results of an experimental study of the ablation spectral energy thresholds for a number of polymer materials ((C2F4) n , (CH2O) n ) exposed to femtosecond (τ0.5 ~ 45–70 fs) laser pulses (λ ~ 266, 400, 800 nm) under atmospheric conditions and under vacuum (p ~ 10–2 Pa). We have analyzed the energy thresholds and the efficiency of optical, thermophysical, and gasdynamic processes in laser ablation vs. the laser pulse duration and photon energy.  相似文献   

12.
The results of experiments on the interaction of laser radiation pulses (at intensities of up to 1015 W cm−2) of different durations (t = 3ps; 300ps; 30ns) with targets in a vacuum chamber are presented. An investigation was made of the optical characteristics of laser plasma in vacuum ultraviolet and X-ray ranges. The intensity of the laser-produced plasma radiation in the range 1–50nm was estimated to be 1010–1012W cm−2. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
The influence of prepulses on the conversion efficiency (CE) of laser radiation into 13 nm extreme ultraviolet (EUV) radiation, resulting from lithium-like oxygen ions from O20 μm water droplets, was investigated. The laser pulse durations in the experiment ranged from 200 fs to 120 ps. Applying prepulses preceding the main pulse at various delays of up to 11 ns, it was shown that the CE increases differently for each measured pulse duration. The strongest dependence on the introduction of a prepulse was observed for 2 ps laser pulses with a 20 mJ laser pulse energy. The EUV CE was improved by a factor of 15 by the introduction of a prepulse. Calculations on the atomic physics of oxygen ions and simulations of the laser–plasma interaction revealed the influence of the prepulse on the EUV yield. Received: 25 October 2002 / Published online: 22 January 2003 RID="*" ID="*"Corresponding author. Fax: +49-3641/947-202, E-mail: duesterer@ioq.uni-jena.de  相似文献   

14.
Laser ablation of thin TiN films deposited on steel substrates has been studied under wide-range variation of irradiation conditions (pulsewidth, wavelength, energy density and spot size). It has been demonstrated that both picosecond (150–300 ps) and nanosecond (5–9 ns) laser pulses were suitable for controllable ablation and microstructuring of a 1-μm-thick TiN film unlike longer 150-ns pulses. The ablation rate was found to be practically independent of the wavelength (270–1078 nm) and pulsewidth (150 ps–9 ns), but it increased substantially when the size of a laser spot was reduced from 15–60 μm to 3 μm. The laser ablation technique was applied to produce microstructures in the thin TiN films consisting of microcraters with a typical size of 3–5 μm in diameter and depth less than 1 μm. Tests of lubricated sliding of the laser-structured TiN films against a steel ball showed that the durability of lubricated sliding increased by 25% as compared to that of the original TiN film. Received: 28 July 1999 / Accepted: 17 April 2000 / Published online: 20 September 2000  相似文献   

15.
Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosecond pulses (248 nm, 20 ns pulse duration). The origin of these pronounced differences between the films grown by ns and fs ablation has been studied in detail by time-resolved optical emission spectroscopy and imaging. The plumes generated by nanosecond and femtosecond ablation were analyzed in vacuum and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar velocities of the plume species are observed for fs and ns laser ablation. The different film compositions are therefore not related to different kinetic energies and different distributions of various species in the plasma plume which has been identified as the origin of the deficiency of species for other materials.  相似文献   

16.
We have developed a 6–12 μm mid-infrared (MIR) femtosecond laser source for glyco-protein structure analysis. The MIR femtosecond laser pulses are generated by a differential frequency generation (DFG) configuration with a combination of Ti:sapphire based regeneratively amplified femtosecond laser pulses (780 nm, 160 fs, 1 mJ) and a β-BaB2O4 (BBO) based optical parametric amplifier (OPA). The MIR pulse energy exceeds 4.5 μJ, where a glyco-protein molecule has resonant absorption lines due to the vibrational–rotational transitions. The pulse width is estimated to be less than 1 ps according to the cross correlation measurement between the two OPA output pulses. Using the MIR femtosecond laser pulses, we demonstrated photo-dissociation of the sialyl Lewis X (sLeX) proton added ion, which is the first time to the best of our knowledge. PACS 42.65.Re; 42.62.-b; 42.60.-b; 42.65.-k; 87.50  相似文献   

17.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

18.
The selective ablation of thin (∼100 nm) SiO2 layers from silicon wafers has been investigated by applying ultra-short laser pulses at a wavelength of 800 nm with pulse durations in the range from 50 to 2000 fs. We found a strong, monotonic decrease of the laser fluence needed for complete ablation of the dielectric layer with decreasing pulse duration. The threshold fluence for 100% ablation probability decreased from 750 mJ/cm2 at 2 ps to 480 mJ/cm2 at 50 fs. Significant corruption of the opened Si surface has been observed above ∼1200 mJ/cm2, independent of pulse duration. By a detailed analysis of the experimental series the values for melting and breaking thresholds are obtained; the physical mechanisms responsible for the significant dependence on the laser pulse duration are discussed.  相似文献   

19.
Localized modification of the optical properties of erbium doped strontium barium niobate (SBN) glass has been performed using femtosecond laser irradiation. The samples, with composition SrO–BaO–Nb2O5–B2O5 and doped with 5%mol of Er3+, were fabricated using a melt-quenching method. The samples were irradiated with different number of pulses per spot (1–50 pulses) at two different laser fluences (2.6 and 5.6 J/cm2) by using an fs laser amplifier operating at 800 nm and generating pulses with a duration of 120 fs. Micro-luminescent microscopy, using an Ar+ laser as excitation source, has been used to analyze the modifications of the luminescent properties of the sample upon fs laser exposure. The emissions of the Er3+: 4I11/24I15/2 and 4I13/24I15/2 transitions allow appreciating the structural modifications caused by femtosecond laser exposure. The lifetimes of the levels involved in these transitions were measured inside and outside the laser irradiated region. These measurements have been compared with those obtained in bulk glass ceramic sample, which is obtained from the glass precursor by a thermal treatment in order to estimate the optimal conditions to produce nanocrystals in a localized region by ultrafast laser irradiation.  相似文献   

20.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号