首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
To analyze the process of the ion-induced graphitization of a polycrystalline diamond, the surfacelayer conductivity and microstructure are studied experimentally after high-fluence irradiation with Ne+, Ar+, N+, and ions with energies of 20–30 keV at irradiation and heat-treatment temperatures ranging from 30 to 720°R in vacuum. After irradiation with argon ions at room temperature and subsequent heat treatment, the resistivity ? of a modified layer decreases exponentially with increasing treatment temperature T ht and reaches the graphite value ? at Tht = 700°R. Such a temperature T ht is insufficient for surface-layer graphitization by nitrogen ions. The increase in the diamond temperature under irradiation leads to a decrease in the ion-induced thermal graphitization temperature T g by several hundred degrees. It is found that the temperature T g is almost coincident with the corresponding temperature Ta of the dynamic annealing of radiation-induced damage in graphite. Analysis of the irradiated layer using Raman spectroscopy reveals the heterogeneous structure of the modified layer containing graphite and amorphous phases, the ratio between which correlates with the layer resistivity. Under argon-ion irradiation at diamond temperatures of 500°R or more, an increase in ? of the irradiated layer is observed, which is related to the formation of nanocrystalline graphite. This effect is not observed under nitrogen-ion irradiation.  相似文献   

2.
The contribution of clusters of different sizes to magnetism and the switching of electron scattering mechanisms in amorphous Fe67Cr18B15 alloy during ion Ar+ irradiation is studied. The cluster magnetism is found to be related to the presence of clusters of the following two types: large α-(Fe, Cr) clusters of size D = 150–250 Å and small (D = 40–80 Å) clusters in a random intercluster medium. The generation of small ferromagnetic and antiferromagnetic clusters during ion irradiation leads to the formation of cluster glass, which affects the electrical properties of the alloy and causes a magnetic frustration. The temperature dependence of the barrier height is shown to characterize the magnetic state of the alloy in low fields. On the whole, the temperature dependence of the order parameter is a universal characteristic of the system. The temperature dependence of resistivity of initial alloys in the temperature range 98–300 K (ρ(T) ∝ T2) is determined by electron scattering by quantum defects, and the transition into a ferromagnetic state is revealed when the derivative ?ρ/?TT is analyzed. The increase in resistivity and the relation ρ ∝ T1/2 in strongly inhomogeneous samples after irradiation at a dose Φ = 1.5 × 1018 ions/cm2 are caused by weak localization effects, and the transition to a ferromagnetic state becomes obvious when the derivative ?ρ/?T ∝ T–1/2 is considered. Irradiation by fluence Φ = 3 × 1018 ions/cm2 induces a giant (twofold) increase in the alloy density, restores the ferromagnetism of large clusters, decreases the resistivity by 37%, and restores the relation ρ(T) ∝ T2, which results from the overlapping of the irradiation-induced small clusters when their concentration increases and from an increase in the alloy density. The overlapping of clusters lowers the barrier height and decreases the sensitivity of the alloy to an applied field. The relation ρ(T) ∝ T2 is valid for the entire temperature range T = 2–300 K because of the partial screening of the magnetic moments of large clusters by a medium having the properties of cluster glass.  相似文献   

3.
Changes in the surface structure of K-208 glass after single-time irradiation of its samples with 20-keV electrons and protons are studied using atomic-force microscopy. Irradiation is performed in a vacuum chamber under a pressure of 10–4 Pa; the densities of the electron (? e ) and proton (? р ) fluxes are varied in the range of 1010–2.5 × 1011 cm?2 s?1. Analysis of the samples irradiated in the case where the parameters ? e and ? р increased in a stepwise manner makes it possible to study the appearance, growth, and evolution of microscopic structures on their surfaces. The radiation-stimulated processes of defect annealing and the release and field diffusion of alkali metal ions are accompanied by crystallization of the irradiated glass layer, which gives grounds for the use of dislocation mechanisms for mass transfer in explaining the formation of microprotrusions on its surface. It is shown that the character of changes in the structure is determined by the values of the parameters ? e and ? р and the ratio between them. In particular, it is established that, in the case of electron— proton irradiation of the glass, electrostatic discharges begin to noticeably affect the formation of microprotrusions for ? е > 3? р .  相似文献   

4.
The compression diagram of Ni49Fe18Ga27Co6 alloy crystals in the [011] direction was studied until full shape memory strain at various temperatures in the range of 259–340 K. It is found that all load curves are anomalously shaped and contain portions of sharp and gradual decreases in deformation stresses. Simulation of pseudo-elastic stress–strain curves within the theory of diffuse martensitic transitions, describing not only equilibrium of phases, but also the kinetics of the transition between them, shows that elastic interphase stresses during martensitic reactions Ll 2 → 14M and 14MLl 0 characteristic of this alloy can be responsible for the extraordinary shape of compression diagrams.  相似文献   

5.
The effect of gamma irradiation on the mechanical properties of lithium tetraborate Li2B4O7 in the single-crystal and vitreous states is investigated. It is found that, after irradiation of the Li2B4O7 single crystal, the temperature range of the dissipative process initially occurring at 380–420 K becomes broader and the fine structure of the peak in the temperature dependence of the internal friction Q?1(T) undergoes a substantial trans-formation. After irradiation of the vitreous Li2B4O7 sample, the increase in the internal friction, which is characteristic of the onset of the α relaxation in this material, is not observed in the dependence Q?1(T) up to a temperature of 570 K. It is shown that the mechanical properties of the irradiated samples are almost completely recovered after annealing at 570 K for 1 h.  相似文献   

6.
The temperature dependences of the residual magnetization in narrow-band manganites (Pr0.67Ca0.33MnO3, Sm0.55Sr0.45Mn18O3, Sm0.55Sr0.45Mn16O3, and (NdEu)0.55Sr0.45Mn18O3) have been studied. All compounds studied are characterized by a fairly high residual magnetization M R (about 0.5 μB/Mn) at 4.2 K, which vanishes upon sample heating to the temperature T RE ≈ 30–35 K, which is much lower than the temperature T C of the ferromagnetic transition. However, upon magnetization of the samples at T RE < T < T C , the residual magnetization (smaller in magnitude) remains up to T C . For the composition (NdEu)0.55Sr0.45Mn18O3, the residual magnetization remains at T < T C , independent of the temperature of magnetization. The disappearance of the residual magnetization found at intermediate temperatures is apparently related to the destruction of the magnetic field-induced ferromagnetic ordering (which contains an additional contribution of the rare-earth sublattice).  相似文献   

7.
Measurements are presented of the low temperature specific heat of three polycrystalline samples of Pr2?x Ce x CuO4 in magnetic fields of 0, 2 and 4 Tesla. The residual specific heat contribution in zero field seems to have a form αT n (n<1) for all of the samples, whether superconducting or non-superconducting. The behaviour in magnetic fields is similar to that reported for other high Tc superconductors where a change in exponent of the residual term occurs at some crossover temperature in magnetic fields.  相似文献   

8.
An analytic expression is obtained for the time dependence Q ?1(t) of internal friction associated with plasticity of a phase transformation. Time dependences Q ?1(t) of internal friction of the Pb-62Sn and Pb-1.9Sn alloys (wt.%) alloys were studied in the regime of continuous excitation of resonant flexural vibrations. The measurements of the Q ?1(t) dependences for 1 h at room temperature and a fixed strain amplitude ε0 ≈ 7 and 19 min) for the Pb-62Sn alloy. For the Pb-1.9Sn alloy under the same conditions, an exponential decrease followed by an internal friction peak (at t m ≈ 7 min) is observed. It is shown numerically that the above singularities of internal friction are formed by processes of intermittent phase decomposition of Pb-Sn alloys in the cyclic stress field produced by an external load. Experimental data on Q ?1(t) are used for reconstructing the kinetic curves describing the decomposition (conversion) ratio as a function of time and for calculating the corresponding values of parameters K and n of the Avrami kinetic equation for the Pb-62Sn alloy.  相似文献   

9.
The Variation of the transition temperature with residual resistance of coldworked In and Tl shows a similar behaviour as in dilute alloy experiments. Subsequent annealing removes lattice defects in distinct steps and restores the properties of pure samples at temperatures below 250 °K. Some of the results can be interpreted in accordance with the model developed byMarkowitz andKadanoff on alloy experiments. Values for the anisotropy parameter 〈a 2In=0.02 and 〈a 2Tl=0.04 were obtained. The interpretation of the “valence” effect and the influence of stress is discussed.  相似文献   

10.
The structural state of a Ti50Ni47Fe3 single crystal irradiated with fast neutrons (F = 2.5 × 1020 cm?2) at a temperature of 340 K was studied using thermal neutron diffraction. The alloy of this chemical composition was chosen in searching for a radiation-resistant shape memory material. It is established that this alloy retains its crystalline state after irradiation, whereas the Ti49Ni51 crystal studied previously is completely amorphized after similar irradiation. A detailed analysis of the structural state of the irradiated ternary alloy allowed us to discover the main physical causes of its radiation resistance.  相似文献   

11.
The effect of temperature and direction of preliminary torsion in the austenitic state on the degree of strain recovery upon heating of a TiNi alloy has been investigated. It is shown that an increase in the preliminary deformation temperature from 500 to 700 K leads to an increase in the degree of shape recovery upon heating of the material studied. In particular, a 20% strain at a temperature of 500 K decreases the recovery coefficient by 20%, whereas the same preliminary strain at 700 K deteriorates the shape recovery by only 4%. It is established that, applying preliminary torsion in the austenitic and martensitic states in opposite directions, one can obtain an increase in the shape memory strain with an increase in the preliminary plastic strain. Thus, at some plastic strains (λ pl > 10%), the strain recovered upon heating may even exceed the strain set in the martensitic state.  相似文献   

12.
The plastic behavior during deformation by upsetting and its effect on the microstructure in the polycrystalline Ni2.19Fe0.04Mn0.77Ga alloy are studied. The temperatures of martensitic and magnetic phase transformations were determined by the method for analyzing the temperature dependence of the specific magnetization as M F = 320 K, A S = 360 K, and T C = 380 K. Using differential scanning calorimetry, it is shown that the phase transition from the ordered phase L21 to the disordered phase B2 is observed in the alloy during sample heating in the temperature range of 930–1070 K. The melting temperature is 1426 K. An analysis of the load curves constructed for sample deposition at temperatures of 773, 873, and 973 K shows that the behavior of the stress–strain curve at a temperature of 773 K is inherent to cold deformation. The behavior of the dependences for 873 and 973 K is typical of hot deformation. After deforming the alloy, its microstructure is studied using backscattered scanning electron microscopy. Plastic deformation of the alloy at study temperatures results in grain structure fragmentation in the localized deformation region. At all temperatures, a recrystallized grain structure is observed. It is found that the structure is heterogeneously recrystallized after upsetting at 973 K due to the process intensity at such a high temperature. The alloy microstructure after plastic deformation at a temperature of 873 K is most homogeneous in terms of the average grain size.  相似文献   

13.
14.
Radiation-stimulated and postradiation changes in the microhardness of silicon single crystals exposed to irradiation with a low-intensity flux of β particles (I = 9 × 105 cm?2 s?1, W = 0.20 + 0.93 MeV) are studied. It is established that the inversion of the radiation-induced plastic effect occurs at a characteristic irradiation time τc = 75 min; i.e., irradiation of silicon single crystals for a time τ < τc leads to nonmonotonic reversible hardening, whereas nonmonotonic reversible softening is observed under irradiation for a time τ > τc. It is demonstrated that there exists a correlation between the nonmonotonic dependences of the microhardness and the concentration of electrically active defects at acceptor levels with energies E c ? 0.11 eV, E c ? 0.13 eV, and E c ? 0.18 eV on the irradiation time.  相似文献   

15.
The magnetic and elastic properties of the Bi1-xCaxMnO3 manganites are studied. The phase transformations revealed are ferromagnet-spin glass (x≥0.15) and spin glass-charge-ordered antiferromagnet (x≥0.25). The ferromagnetic state is characterized by ordering of the Mn3+d x 2-y orbitals. It is suggested that thespin glass state originates from local static Jahn-Teller distortions. The antiferromagnetic charge-ordered and the spin-glass disordered phases coexist in samples with 0.25<x<0.32, which may be due to the charge order-disorder phase transformation being martensitic in character. The magnetic phase diagram is constructed.  相似文献   

16.
The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50–zGaz (0 ? z ? 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature–concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2M) martensite, and the 10M and 14M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011}B2. Martensite crystals are twinned along one of the 24 \(24\left\{ {011} \right\}{\left\langle {01\bar 1} \right\rangle _{B2}}\) “soft” twinning shear systems, which provides coherent accommodation of the martensitic transformation–induced elastic stresses.  相似文献   

17.
18.
The temperature dependences of the electrical resistivity ρ(T) and the ac magnetic susceptibility χ(T, H = 0) are thoroughly investigated for a perovskite-like lanthanum manganite, namely, La0.85Sr0.15MnO3, which is preliminarily exposed to neutron irradiation with a fluence F = 2 × 1019 cm?2 and then annealed at different temperatures ranging from 200 to 1000°C. The results of the electrical resistance measurements demonstrate that neutron irradiation of the samples leads to the disappearance of the low-temperature insulating phase. As the annealing temperature increases, the insulating phase is not restored and the manganite undergoes a transformation into a metallic phase. Analysis of the magnetic properties shows that, under irradiation, the ferromagnet-paramagnet phase transition temperature TC decreases and the magnetic susceptibility is reduced significantly. With an increase in the annealing temperature, the phase transition temperature TC and magnetic susceptibility χ(T, H = 0) increase and gradually approach values close to those for an unirradiated sample. This striking difference in the behavior of the electrical and magnetic properties of the radiation-disordered La0.85Sr0.15MnO3 manganite is explained qualitatively.  相似文献   

19.
Two successive magnetocaloric effects consisting of inverse magnetocaloric effect around martensitic transition and negative magnetocaloric effect around magnetic transition of austenitic phase have been observed in Ni50Mn34In15Al alloy. Large inverse magnetic entropy change ΔSm ( ~ 21.3 J kg?1 K?1), small thermal and magnetic hysteresis of martensitic transition give rise of large net refrigerant capacity ( ~ 152.3 J kg?1) under a magnetic field of 50 kOe, which is comparable with that ( ~ 157.9 J kg?1) of second-order transition. The large combined magnetocaloric effects make the Ni50Mn34In15Al alloy as a promising candidate material for room temperature magnetic refrigeration.  相似文献   

20.
The critical magnetic fields H c and H c2 are measured for thin films of the isotropic superconductor NbC. It is revealed that the critical fields exhibit strong anisotropy due to the vortex-free state of the film in a magnetic field aligned parallel to its surface. The H c/H c2 ratio at 2 K exceeds 6 and increases with increasing temperature. The dependence H c(T) agrees quantitatively with the concepts of microscopic theory on the vortex-free state of a thin film of a clean superconductor in the temperature range below T c . As the electron mean free path decreases under irradiation of the film with a low dose of He+ ions, the critical field H c remains unchanged near T c but increases significantly at lower temperatures. The well-known theoretical models are used to estimate the electronic parameters and thicknesses of MgB2 films for which the specific features associated with the vortex-free state of the two-gap superconductor can manifest themselves in the temperature dependence of the critical magnetic field H c(T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号