首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Stochastic subsurface transport theories either disregard local dispersion or take it to be constant. We offer an alternative Eulerian-Lagrangian formalism to account for both local dispersion and first-order mass removal (due to radioactive decay or biodegradation). It rests on a decomposition of the velocityv into a field-scale componentv , which is defined on the scale of measurement support, and a zero mean sub-field-scale componentv s , which fluctuates randomly on scales smaller than. Without loss of generality, we work formally with unconditional statistics ofv s and conditional statistics ofv . We then require that, within this (or other selected) working framework,v s andv be mutually uncorrelated. This holds whenever the correlation scale ofv is large in comparison to that ofv s . The formalism leads to an integro-differential equation for the conditional mean total concentration c which includes two dispersion terms, one field-scale and one sub-field-scale. It also leads to explicit expressions for conditional second moments of concentration cc. We solve the former, and evaluate the latter, for mildly fluctuatingv by means of an analytical-numerical method developed earlier by Zhang and Neuman. We present results in two-dimensional flow fields of unconditional (prior) mean uniformv . These show that the relative effect of local dispersion on first and second moments of concentration dies out locally as the corresponding dispersion tensor tends to zero. The effect also diminishes with time and source size. Our results thus do not support claims in the literature that local dispersion must always be accounted for, no matter how small it is. First-order decay reduces dispersion. This effect increases with time. However, these concentration moments c and cc of total concentrationc, which are associated with the scale below, cannot be used to estimate the field-scale concentrationc directly. To do so, a spatial average over the field measurement scale is needed. Nevertheless, our numerical results show that differences between the ensemble moments ofc and those ofc are negligible, especially for nonpoint sources, because the ensemble moments ofc are already smooth enough.  相似文献   

2.
We describe a system in which vortices are shed from a cylindrical free surface approximately centered in a rotating flow. Shedding is controlled by the parameter =2 g/ 2 d, where g, , d denote gravity, rotation rate and the diameter of the free surface. We find vortex shedding for >0.162 and no vortex shedding for < 0.0847. The range depends on the aspect ratio L/d, where L is the column length, in a nonmonotonic fashion. These results are independent of viscosity and surface tension for small values of these parameters.Now at Martin Marietta, Orlando Aerospace, PO Box 5837, Mail Point 150, Orlando, FL 32855, USA  相似文献   

3.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

4.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

5.
An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,n . Three mode interaction (2 31 and 3 1 + 22) is considered and its influence on the response is studied. The case of two mode interaction (2 31) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.  相似文献   

6.
We prove that the set D of vector fields on the configuration space B of a field whose 1-parameter groups locally associated are groups of fibre-preserving transformations of B that leave invariant that field in the sense of variational theory, is a Lie algebra with respect to ordinary addition, multiplication by real numbers and Lie brackets. We see that this Lie algebra structure can be carried over to the corresponding set of Noether invariants, which then becomes a Lie algebra in a natural way.Further, we define the n-form of Poincaré-Cartan of a field, and we use it to generalize the Lie algebras D and in a reasonable way. The algebras D and are subalgebras of the new Lie algebras D and introduced. A main result in this connection is the following: the differential d of the n-form of Poincaré-Cartan is –(d+f), where (, d+f) are the field equations on the vertical bundle B.The symplectic manifold of solutions associated with a field is introduced in a formal way and the former Lie algebras D, , D, are interpreted on this manifold. In imitation of the case of analytical dynamics, the main results in this direction are: a) Every vector field of the Lie algebra D defines, in a canonical way, a vector field on the manifold of solutions such that its polar 1-form with respect to the symplectic metric 2 is the differential of its corresponding Noether invariant, and b) the Lie bracket [, ] of two Noether invariants , is the Noether invariant given by 2(D, D), where D, D are the vector fields on the manifold of solutions defined, in the sense a), by two infinitesimal generators of , , respectively. This will allow us to regard the Lie algebra as the analogous object in field theory to the Poisson algebra of analytic dynamics.We apply the general formalism to the relativistic theory of non-linear scalar fields, and we compare our results with the formalism developed by I. Segal for this case.  相似文献   

7.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

8.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

9.
Summary Results are given of a comparison between dynamic oscillatory and steady shear flow measurements with some polymer melts. Comparison of the steady shear flow viscosity,, with the absolute value of the dynamic viscosity, ¦¦, at equal values of the shear rate,q, and the circular frequency,, has shown the relation thatCox andHerz had found empirically to be substantially correct.Further, the coefficients of the normal stress differences obtained by streaming birefringence techniques have been compared with 2G () · – 2 in the same range of shear rates as covered by the viscosity measurements (G is the real part of the dynamic shear modulus). Two polystyrenes with narrow molecular weight distribution showed the same shift factor along the orq axis for the normal stress coefficients with respect to 2G () · – 2 and the steady shear flow viscosities with respect to the real part of the dynamic viscosity,. For two polyethylenes the results are not so conclusive owing to the smallness of the shift factor found. An empirical equation is proposed predicting the main normal stress difference from dynamic measurements only.
Zusammenfassung Die Ergebnisse von Messungen unter erzwungenen Schwingungen und stationärer Scherströmung an einigen Polymerschmelzen werden miteinander verglichen. Der Vergleich der stationären Viskosität mit der absoluten dynamischen Viskosität ¦¦ bei gleichen Werten des Strömungsgradientenq und der Kreisfrequenz zeigt die Gültigkeit der empirischen Beziehung vonCox undHerz.Weiter wurden die Koeffizienten der Normalspannungsdifferenzen, welche durch Messung der Strömungsdoppelbrechung erhalten wurden, mit 2G() · –2 verglichen, und zwar wiederum bei gleichen Werten vonq und, wobeiG die Speicherkomponente des dynamischen Schubmoduls ist. Zwei Polystyrole mit enger Molekulargewichtsverteilung zeigen die gleiche Verschiebung entlang der-oderq-Achse für die Normalspannungskoeffizienten in bezug auf2G()· –2 und für die stationären Scherviskositäten in bezug auf den Realteil der dynamischen Viskosität. Für zwei Polyäthylene sind die Ergebnisse weniger signifikant, da die entsprechenden Verschiebungen zu klein waren. Eine empirische Beziehung zwischen den Hauptnormalspannungsdifferenzen und den dynamischen Meßwerten wird vorgeschlagen.


Paper presented at the British Society of Rheology Conference, held at Shrivenham, from 9th–12th September, 1968.  相似文献   

10.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

11.
Gelatin gel properties have been studied through the evolution of the storage [G()] and the loss [G()] moduli during gelation or melting near the gel point at several concentrations. The linear viscoelastic properties at the percolation threshold follow a power-law G()G() and correspond to the behavior described by a rheological constitutive equation known as the Gel Equation. The critical point is characterized by the relation: tan = G/G = cst = tan ( · /2) and it may be precisely located using the variations of tan versus the gelation or melting parameter (time or temperature) at several frequencies. The effect of concentration and of time-temperature gel history on its variations has been studied. On gelation, critical temperatures at each concentration were extrapolated to infinite gel times. On melting, critical temperatures were determined by heating step by step after a controlled period of aging. Phase diagrams [T = f(C)] were obtained for gelation and melting and the corresponding enthalpies were calculated using the Ferry-Eldridge relation. A detailed study of the variations of A with concentration and with gel history was carried out. The values of which were generally in the 0.60–0.72 range but could be as low as 0.20–0.30 in some experimental conditions, were compared with published and theoretical values.  相似文献   

12.
McAdams  J. E.  Williams  M. C. 《Rheologica Acta》1986,25(2):102-109
Theta solvents for polystyrene are prepared from high-viscosity blends of styrene and low-molecular-weight polystyrene, and then used to make dilute solutions with monodisperse polystyrene solutes of high-M = 2.3, 6.0, 9.0, 18.0 · 105. A Weissenberg rheogoniometer is used to measure the non-Newtonian viscosity as a function of shear stress, for low values, and also the complex viscosity components and as functions of frequency. A capillary viscometer is used for high- measurements of(). Viscometric properties, at room temperature, are analyzed as functions of high-molecular-weight solute concentrationc with parameters of constant or to obtain [()], [ ()], and [ ()]. Such a collection of data has apparently not previously been available for polymers in theta solvents (in which Gaussian chain statistics prevail). Also unique is the achievement of high stress ( = 2 104 Pa) at low shear rate, by virtue of high solvent viscosity which is not characteristic of other known theta solvents.  相似文献   

13.
A theory analogue to tha of Rouse is given, to describe the rheological behavior of dilute solutions consisting of clusters of crosslinked polymers. The frequency-dependent behavior of the dynamic moduli of these fluids differs substantially from that of the well-known Rouse-like fluid (GG1/2). In our case the storage modulus becomes proportional to 3/2, while the loss modulus is proportional to . The loss modulus dominates the dynamic behavior for frequencies smaller than the largest normal frequency of the clusters.  相似文献   

14.
Stress-optical measurements are used to quantitatively determine the third-normal stress difference (N 3 = N 1 + N 2) in three entangled polymer melts during small amplitude (<15%) oscillatory shear over a wide dynamic range. The results are presented in terms of the three material functions that describe N 3 in oscillatory shear: the real and imaginary parts of its complex amplitude 3 * = 3 - i 3 , and its displacement 3 d . The results confirm that these functions are related to the dynamic modulus by 2 3 * ()=(1-)[G *())– G *(2)] and 2 3 d ()=(1- )G() as predicted by many constitutive equations, where = –N 2/N 1. The value of (1-) is found to be 0.69±0.07 for poly(ethylene-propylene) and 0.76±0.07 for polyisoprene. This corresponds to –N 2/N 1 = 0.31 and 0.24±0.07, close to the prediction of the reptation model when the independent alignment approximation is used, i.e., –N 2/N 1 = 2/7 – 0.28.  相似文献   

15.
A theoretical investigation is carried out on the orbital motions of a symmetrical, unbalanced, rigid rotor subjected to a constant vertical load and supported on two lubricated journal bearings. In order to determine the fluid film forces, the short bearing theory is adopted.A method is illustrated that makes it possible to determine the analytical equation of the orbit as an approximated solution of the system of non-linear differential equations of motion of the journal axis. A procedure is also described for evaluating the stability of the solution found. Diagrams of the curves delimiting, in the working plane of the rotor -m, the areas of stability of the various periodic solutions determined are provided.Finally, the results obtained are compared and combined with those provided by a direct integration of the motion equation made using the Runge-Kutta method.Nomenclature C radial clearance - D = 2R bearing diameter - E mass unbalance cecentricity - Fx, Fy fluid film force components - fi = Fi/W dimensionless fluid film force components - L bearing length - M one half rotor mass - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaad2gacqGH9aqpcaWGnbGaam4qaiabeM8a% 3naaCaaaleqabaGaaGOmaaaakiaac+cacqaHdpWCcaWGxbaaaa!471F!\[m = MC\omega ^2 /\sigma W\] dimensionless one half rotor mass - R bearing radius - T = 2 synchronous orbit period - t time - W load per bearing - X, Y, Z coordinates - x = X/C; y = y/C; z = Z/L dimensionless coordinates - oil dynamic viscosity - = E/C dimensionless mass unbalance eccentricity - = (RL/W)/(R/C) 2 (L/D) 2 modified Sommerfeld number - = t dimensionless time = periodic orbit frequency - = 2/ frequency ratio - journal angular velocity - (·) dimensionless time derivative  相似文献   

16.
Summary The fluctuating free convection flow along a semi-infinite vertical plate is considered when the plate temperature is of the form T p –T =(T 0 –T ) where 0 < 1, denotes the frequency of oscillation and the mean temperature T 0T is proportional to n (0 n < 1). Flow and temperature fields have been obtained by means of two asymptotic expansions. For small values of the frequency parameter , a regular expansion is obtained while for large the method of matched asymptotic expansion is used. It is found that the skin friction and the rate of heat transfer obtained from two expansions overlap satisfactorily for a certain value of . For n=1 the flow governing equations to a semisimilar form, and have been solved by finite difference method. The results obtained from the series and the finite difference methods are in good agreement.
Oszillierender Wärmeübergang an einer halbunendlichen senkrechten Platte bei freier Konvektion
Übersicht Betrachtet wird die fluktuierende freie Konvektionsströmung längs einer halbunendlichen senkrechten Platte, deren Temperatur dem Gesetz T p –T =(T 0T ) [1+ sin {ie1-03}] folgt, wobei 0 < 1 gelte, {ie1-04} die Frequenz ist und der Temperatur-Mittelwert T 0T proportional zu n (0 n < 1) ist. Mit Hilfe zweier asymptotischer Entwicklungen werden die Strömungs- und Temperaturfelder gewonnen. Für kleine Werte des Frequenzparameters wird eine gewöhnliche Entwicklung benutzt, für große die Methode angepaßter asymptotischer Entwicklungen. Es stellt sich heraus, daß die Oberflächenreibung und die Wärmeübergangsrate aus zwei Entwicklungen für ein bestimmtes zufriedenstellend aufeinander fallen. Für n=1 werden die Grundgleichungen zueinander ähnlich und werden nach der Finite-Differenzen-Methode gelöst. Die Ergebnisse nach den Reihenentwicklungen und der Finite-Differenzen-Methode stimmen gut überein.
  相似文献   

17.
Steady-shear and dynamic properties of a pooled sample of cattle synovial fluid have been measured using techniques developed for low viscosity fluids. The rheological properties of synovial fluid were found to exhibit typical viscoelastic behaviour and can be described by the Carreau type A rheological model. Typical model parameters for the fluid are given; these may be useful for the analysis of the complex flow problems of joint lubrication.The two major constituents, hyaluronic acid and proteins, have been successfully separated from the pooled sample of synovial fluid. The rheological properties of the hyaluronic acid and the recombined hyaluronic acid-protein solutions of both equal and half the concentration of the constituents found in the original synovial fluid have been measured. These properties, when compared to those of the original synovial fluid, show an undeniable contribution of proteins to the flow behaviour of synovial fluid in joints. The effect of protein was found to be more prominent in hyaluronic acid of half the normal concentration found in synovial fluid, thus providing a possible explanation for the differences in flow behaviour observed between synovial fluid from certain diseased joints compared to normal joint fluid.Nomenclature A Ratio of angular amplitude of torsion head to oscillation input signal - G Storage modulus - G Loss modulus - I Moment of inertia of upper platen — torsion head assembly - K Restoring constant of torsion bar - N 1 First normal-stress difference - R Platen radius - S (i) Geometric factor in the dynamic property analysis - t 1 Characteristic time parameter of the Carreau model - X, Y Carreau model parameters - Z () Reimann Zeta function of - Carreau model parameter - Shear rate - Apparent steady-shear viscosity - * Complex dynamic viscosity - Dynamic viscosity - Imaginary part of the complex dynamic viscosity - 0 Zero-shear viscosity - 0 Cone angle - Carreau model characteristic time - Density of fluid - Shear stress - Phase difference between torsion head and oscillation input signals - 0 Zero-shear rate first normal-stress coefficient - Oscillatory frequency  相似文献   

18.
An analogue experiment is proposed to simulate flame flickering comprising a free ascending column fed on its side with a light gas (helium) emerging from a vertical slot in ambient air. The convective motion of the helium jet is considered to represent the motion of burnt gases of buoyant jet flames. The helium jet is accelerated by buoyancy effects and the flow field is similar to that of burnt gases observed for real buoyant flames. The vertical velocity profile of the steady helium jet is measured at different vertical distances. The unsteady helium jet is also studied by measuring the instability frequency as a function of ambient pressure at different injection flow rates, and by analyzing the tomography images of the helium jet. The instability morphology is the same as that observed on real buoyant flames. We conclude that this type of instability can be approximately characterized by the maximum vertical velocityu max, and the distance betweenu max in the helium ascending column andu = o in the ambient air. For this type of instability the local vorticity is proportional to which can be influenced by gravity and ambient pressure. Theoretical prediction of the instability frequency as a function of gravity and ambient pressure has been obtained, and is in good agreement with the experimental results.List of symbols C 1,C 2 constants - F instability frequency - F c critical frequency - F m the most amplified frequency - F (K, ) function defined in (11) - g gravitational acceleration - g reduced gravity acceleration g(0-*)/* - k real wave number of the disturbance - K reduced wave numberK=2k - K c reduced wave number of the critical instability mode - K m nondimensional wavenumber of the most amplified mode - L vertical characteristic length (in x direction) - P ambient pressure - u local vertical buoyant velocity (inx direction) - u max local maximum vertical velocity - v local velocity component iny direction (horizontal) - V 0 injection velocity of helium (iny direction) - x vertical distance measured from the leading edge of boundary layer - y horizontal distance measured from the exit plane of the vertical slot - Z(K, ) function defined in equation (11) Greek symbols distance betweenu max in the helium ascending column andu = o in the ambient air - - wavelength of instability - c critical wavelength - m the most amplified wavelength - * helium density at slot exit - 0 ambient air density - * helium dynamic viscosity at slot exit - v * helium kinematic viscosity at slot exit - complex number presented in disturbancee i(kx+t) - i imaginary part of , representing the amplification rate of disturbance - r real part of , where ( r /k) represents the group velocity - reduced complex number of , defined   相似文献   

19.
Complex viscosity * = -i predictions of the Dasbach-Manke-Williams (DMW) internal viscosity (IV) model for dilute polymer solutions, which employs a mathematically rigorous formulation of the IV forces, are examined in the limit of infinite IV over the full range of frequency number of submolecules N, and hydrodynamic interaction h *. Although the DMW model employs linear entropic spring forces, infinite IV makes the submolecules rigid by suppressing spring deformations, thereby emulating the dynamics of a freely jointed chain of rigid links. The DMW () and () predictions are in close agreement with results for true freely jointed chain models obtained by Hassager (1974) and Fixman and Kovac (1974 a, b) with far more complicated formalisms. The infinite-frequency dynamic viscosity predicted by the DMW infinite-IV model is also found to be in remarkable agreement with the calculations of Doi et al. (1975). In contrast to the other freely jointed chain models cited above, however, the DMW model yields a simple closed-form solution for complex viscosity expressed in terms of Rouse-Zimm relaxation times.  相似文献   

20.
Summary The viscoelastic properties of 65/35 styrenen-butyl methacrylate random copolymers were determined using the Eccentric Rotating Disks device of the Rheometrics Mechanical Spectrometer. Similar to the behavior observed in homopolymers, an increase in the molecular weight of the copolymer resulted in extension of the rubbery plateau and in a reduction in the terminal region. The dynamic complex viscosity showed onset of non-Newtonian flow at higher frequencies, with the non-Newtonian region increasing with increasing molecular weight.The elastic modulus,G, was dependent upon the frequency,, asG 1.5 in the terminal region, rather than asG 2 observed for polystyrene. The viscous modulus,G, was proportional to the frequency,, asG , similar to what is observed for polystyrene. The dynamic viscosity | *| at high frequencies showed a region independent of molecular weight where a power law of | *| 0.9 is applicable, consistent with entanglement models. Thy dynamic viscosity at low frequencies in the Newtonian region is related to molecular weight as |*| . Using WLF equations, the coefficient of expansion, f , was obtained that, together with glass transition, showed a negative deviation from the Fox-Flory relationship.
Zusammenfassung Die viskoelastischen Eigenschaften von statistischen 65/35-Styrol/n-Butyl-Methacrylat-Kopolymeren wurden mit Hilfe einer Maxwell-Rheometer-Anordnung in Verbindung mit dem Mechanischen Spektrometer der Fa. Rheometrics bestimmt. Ähnlich dem bei Homopolymeren beobachteten Verhalten ergab sich auch hier mit wachsendem Molekulargewicht eine Verbreiterung des Kautschuk-Plateaus und eine Verkleinerung des Endbereichs. Die komplexe Viskosität zeigte erst bei höheren Frequenzen das Einsetzen nicht-newtonschen Fließens an, wobei der nichtnewtonsche Bereich mit steigendem Molekulargewicht größer wurde.Der SpeichermodulG ergab sich im Endbereich als proportional zu 1,5, im Unterschied zu der bei Polystyrol beobachteten Proportionalität mit 2. Dagegen war der VerlustmodulG der Frequenz direkt proportional, ähnlich wie es auch bei Polystyrol beobachtet worden war. Die dynamische Viskosität | *| zeigte unabhängig vom Molekulargewicht bei hohen Frequenzen einen Bereich, in dem eine Potenz-Beziehung | *| ~ 0,9 herrschte, was auf die Wirkung von Verzweigungen hindeutet. Dagegen galt bei den niedrigen Frequenzen des newtonschen Bereichs|*| ~ . Mit Hilfe der WLF-Gleichung wurde der Ausdehnungskoeffizient f bestimmt, der ebenso wie der Glasübergang eine negative Abweichung von der Fox-Flory-Beziehung zeigte.


With 10 figures and 1 table  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号