首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract

The scattering of waves by random rough surfaces has important applications in the remote sensing of oceans and land. The problem of developing a model for rough surfaces is very difficult since, at best, the scattering coefficient σ0 is dependent upon (at least) the radar frequency, geometrical and physical parameters, incident and observation angles, and polarization. The problem of electromagnetic scattering from a randomly rough surface is analysed using the Kirchhoff approximation (stationary phase, scalar approximation), the small-perturbation model and the two-scale models. A first major new consideration in this paper is the polarimetric signature calculations as a function of the transmitter location and receiver location for a bistatic radio-link. We calculate the like- and cross-polarized received power directly using the scattering coefficients, without calculating the Mueller matrix. Next, a study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models (in the bistatic case) is presented. Comparisons between the numerical calculations and the models are made for various surface rms heights and correlation lengths both normalized to the incident wavenumber (denoted by σ and L, respectively). By using these two parameters to form a two-dimensional space, the approximate regions of validity are then established. The second major new consideration is the development of a theoretical two-scale model describing bistatic reflectivity as well as the numerical results computed for the bistatic radar cross section from rough surfaces especially from the sea and snow-covered surfaces. The results are used to show the Brewster angle effect on near-grazing angle scattering.  相似文献   

3.
Abstract

An iterative solution to the problem of scattering from a one-dimensional rough surface is obtained for the Dirichlet boundary condition. The advantages of this method are that bounds for convergence of the solution can be established and that the solution may readily be iterated to sufficiently high order in the interaction to examine the rate at which it converges. Absolute convergence of the iterative solution is also a sufficient condition for the convergence of the operator expansion method for surfaces on which the slope is everywhere less than unity. A numerical example of scattering from an echelette grating is considered, and bounds for convergence established. It is found that for scattering from such surfaces the rate at which the iterative solution converges decreases as the surface slope is increased. Corresponding results are found for the operator expansion method.  相似文献   

4.
Integrodifferential equations for the cross section of the scatterer and a collocation method are used to obtain a numerical solution of the problem of scattering of an H-polarized wave by an anisotropic layer of a three-layer dielectric structure. Zh. Tekh. Fiz. 68, 84–88 (January 1998)  相似文献   

5.
Abstract

Small-slope approximation (SSA) is a scattering theory that is supposed to unify both the small-perturbation model and the Kirchhoff approximation (KA). We study and compute the second-order small-slope approximation (SSA2) in a high-frequency approximation (SSA2-hf) that makes it proportional to the first-order term, with a roughness-independent factor. For the 3D electromagnetic problem we show analytically that SSA2-hf actually meets KA in the case of perfectly conducting surfaces. This no longer holds in the dielectric case but we give numerical evidence that the two methods remain extremely close to each other for moderate scattering angles. We discuss the potential applications of SSA2-hf and give some 2D numerical comparison with rigorous computations.  相似文献   

6.
Abstract

Numerical methods are of great importance in the study of electromagnetic scattering from random rough surfaces. This review provides an overview of rough surface scattering and application areas of current interest, and surveys research in numerical simulation methods for both one- and two-dimensional surfaces. Approaches considered include numerical methods based on analytical scattering approximations, differential equation methods and surface integral equation methods. Emphasis is placed on recent advances such as rapidly converging iterative solvers for rough surface problems and fast methods for increasing the computational efficiency of integral equation solvers.  相似文献   

7.
Abstract

The radar cross section (RCS) of a conducting elliptic cylinder in a strong continuous random medium is analysed numerically for E-wave and H-wave incidences, by solving the wave scattering as a boundary value problem. The numerical analysis shows that the spatial coherence of an incident wave on the cylinder has an important effect on the RCS, besides the well known effect of double passage, and that the spatial coherence effect depends on the curvature of the elliptic surface illuminated by an incident wave and the size of the ellipse.  相似文献   

8.
Abstract

It is shown that for scattering from a plane in an average rough surface, the scattering cross section of the range of small grazing angles of the scattered wave demonstrates a universal behaviour. If the angle of incidence is fixed (in general it should not be small), the diffusive component of the scattering cross section for the Dirichlet problem is proportional to θ2 where θ is the (small) angle of elevation, and for the Neumann problem it does not depend on θ. For the backscattering case these dependences correspondingly become θ4 and θ°. The result is obtained from the structure of the equations that determine the scattering problem rather than by use of an approximation.  相似文献   

9.
Abstract

The problem of electromagnetic wave scattering by a slightly rough interface in an arbitrarily layered medium is solved by a small-perturbation method. The bistatic amplitude of scattering as well as the scattering cross sections for statistically rough surfaces are calculated for linear polarized waves. Along with scattering into up-going waves in a homogeneous medium and scattering cross sections in down-going waves into a layered medium, scattering amplitudes from a rough interface in the arbitrarily layered medium are obtained.  相似文献   

10.
Abstract

The problem of electromagnetic wave scattering from a random medium layer with a random interface is considered. The layer has planar boundaries on average. Assuming that both the random perturbations of the interface and the random fluctuations of permittivity of the medium are small, a first-order perturbation solution to the scattered field is obtained. Using this solution, the bistatic scattering coefficients γαβ are calculated and expressed in a compact and meaningful form. The various terms that constitute γαβ are identified with distinct scattering processes. Since it is often of particular interest, the special case of backscattering is considered. Finally, the results are compared with those of others.  相似文献   

11.
Abstract

A new formulation of the rough-surface scattering problem is obtained that is closely linked to the Kirchhoff approximation. The governing equation is cast into a form amenable to solution by the method of successive approximations. The domain of convergence of this solution is established and is shown to apply also to the odd-ordered operator expansion, small-slope approximation and perturbation theory provided that the slope of the scattering surface is everywhere less than unity. The analysis is performed for scattering from one-dimensional pressure-release surfaces. Numerical examples are presented for sinusoidal and echelette gratings.  相似文献   

12.
Abstract

The small-slope approximation (SSA) for wave scattering at the rough interface of two homogeneous half-spaces is developed. This method bridges the gap between two classical approaches to the problem: the method of small perturbations and the Kirchhoff (or quasi-classical) approximation. In contrast to these theories, the SSA is applicable irrespective of the wavelength of radiation, provided that the slopes of roughness are small compared with the angles of incidence and scattering.

The resulting expressions for the SSA are given for the entries of an S-matrix that represents the scattering amplitudes of plane waves of different polarizations interacting with the rough boundary. These formulae are quite general and are valid, in fact, for waves of different origins. Apart from the shape of the boundary, some functions in these formulae are coefficients of the expansion of the S-matrix into a power series in terms of elevations. These roughness independent functions are determined by a specific scattering problem. In this paper they are calculated for the case of electromagnetic scattering at the interface of two dielectric half-spaces. In contrast to an earlier paper by the author, where only the formulae for the reflected field were presented, in this paper both reflected and transmitted fields are considered in detail.

The a priori symmetry relations that this scattering problem should obey (reciprocity and energy conservation) are formulated in terms of the S-matrix.

The statistical moments of scattering amplitudes are directly related to the mean-reflection coefficient and scattering cross sections, which are usually determined experimentally. The corresponding formulae are given here for the case of Gaussian space-homogeneous statistics of roughness.  相似文献   

13.
Certain numerical characteristics of an inverse formulation for three-term scattering radiative transfer are investigated. Specifically, approximate solutions to the direct problem are constructed by the FN and Monte Carlo methods, allowing approximation of the various surface angular moments and related quantities needed for the inverse calculation. Several numerical schemes are employed in order of demonstrate the computational characteristics for some specific phase functions. The numerical results indicate that the single-scatter albedo can be calculated fairly consistently and accurately, but higher order coefficients of the scattering law are more difficult to obtain by this method.  相似文献   

14.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

15.
Abstract

We present a numerical simulation of scattering by one-dimensional randomly rough surfaces. It is based on the use of plane-wave expansions to describe the Melds on the surface (i.e. Rayleigh hypothesis). Accuracy and convergence properties of two different numerical implementations are studied. Some examples of results for a dielectric and a metallic Gaussian rough surface are shown to be in good agreement with calculations by a rigorous numerical method. The Rayleigh method appears to be a fast computation tool for dielectric surfaces with slopes of less than 0.2.  相似文献   

16.
Abstract

We propose a model for scattering from one-dimensional, perfectly conducting, slightly rough surfaces. A possible method for solving the scattering equations is examined which, with some assumptions, suggests the final result. The approximation is relatively simple and is comparable in computational effort with most first-order theories. We compare the bistatic scattering cross section for TE waves predicted by the present model for Gaussian randomly rough surfaces with numerical simulations and with some first-order theories. The comparison shows that the model is remarkably accurate for slightly rough surfaces and TE polarization.  相似文献   

17.
A theoretical and numerical analysis is made of the dynamics of nonlinear electron-beam scattering of a wave reflected by the emitting device of a plasma oscillator. It is shown that a counterpropagating plasma wave can interact nonlinearly with other waveguide modes of the system and with charge-density beam waves, leading to changes in the operation of the oscillator. It is established by means of a numerical simulation that the generation efficiency is reduced as a result of scattering of the counterpropagating wave and stimulated emission of a strong-potential plasma wave with phase velocity v ph=ω/k zc. Zh. éksp. Teor. Fiz. 112, 1299–1311 (October 1997)  相似文献   

18.
Abstract

The operator expansion method is known to give accurate numerical results for scattering from individual surfaces that are too complicated for other methods. It is less widely appreciated that the method can be applied to random surfaces as well. The simplest application is the modelling of mean forward scatter from a homogeneous Gaussian ensemble of surfaces. To leading order in the admittance operator, the formula for the scalar Dirichlet boundary includes an exponential form in the roughness correlation function. The scalar Neumann boundary adds terms involving the gradients of the exponential form. These factors modestly alter the magnitude and advance the phase of the coherent scatter relative to the conventional one-point (Kirchhoff) approximation when the significant surface correlation scales are comparable to the radiation wavelength. Narrow troughs in the surface undulations ‘repel’ the radiation and effectively elevate and flatten the mean surface. These results are reliable over a wide range of surface amplitudes and correlation scales, provided the slope times Rayleigh height (Dirichlet problem) and slope (Neumann problem) are not large.  相似文献   

19.
Recent neutron scattering experiments on CsNiCl3 reveal some features that are not well described by the standard nonlinear σ model, nor by numerical simulations, for isolated S = 1 spin chains. In particular, in real systems at the antiferromagnetic point of the Brillouin zone, the intensity of the continuum of multiparticle excitations, at T = 6 K, is about 5 times greater than predicted. Also, the spin gap is higher and the correlation length is smaller than predicted. We propose a theoretical scenario where the interchain interaction is approximated by an effective staggered magnetic field, and that yields a correct prediction for the observed quantities. Received 2 October 2002 / Received in final form 19 March 2003 Published online 7 May 2003  相似文献   

20.
This paper uses an integrable model to study an asymptotic solution describing the transformation of energy occurring in stimulated Raman scattering. The model allows for motion of populations and for the nonlinear Stark effect. Initial conditions leading to a radiative solution are discussed. The boundary conditions reflect the injection into the medium of high-power pulses of constant-amplitude pump and Stokes fields. It is shown that the radiative asymptotic behavior of this problem in the limit of weak medium excitation and in the limit of rapidly varying intense fields is determined by the kernels of Marchenko equations that are proportional to functions depending only on a self-similar variable. Analytic solutions are found for these cases. Detailed numerical calculations carried out for weak fields corroborate the analytic results. The role of the soliton part of the continuous spectrum of the problem is also studied. It is found that a high-power soliton of the Stokes field can be generated at the leading edge of a wave packet. Zh. éksp. Teor. Fiz. 115, 1168–1195 (April 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号