首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules.  相似文献   

2.
In DNA points accumulation in nanoscale topography (DNA‐PAINT), capable of single‐molecule localization microscopy with sub‐10‐nm resolution, the high background stemming from the unbound fluorescent probes in solution limits the imaging speed and throughput. Herein, we reductively cage the fluorescent DNA probes conjugated with a cyanine dye to hydrocyanine, acting as a photoactivatable dark state. The additional dark state from caging lowered the fluorescent background while enabling optically selective activation by total internal reflection (TIR) illumination at 405 nm. These benefits from “reductive caging” helped to increase the localization density or the imaging speed while preserving the image quality. With the aid of high‐density analysis, we could further increase the imaging speed of conventional DNA‐PAINT by two orders of magnitude, making DNA‐PAINT capable of high‐throughput super‐resolution imaging.  相似文献   

3.
Recent developments in fluorescence microscopy call for novel small‐molecule‐based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live‐cell single‐molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live‐cell experiments. At the same time, quality of super‐resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small‐molecule label comprising both fluorogenic and self‐blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single‐molecule localization microscopy on live‐cell samples.  相似文献   

4.
A new generation of monomolecular imaging probes (MOMIP) based on a distyryl‐BODIPY (BODIPY=boron‐dipyrromethene) coupled with three DOTA macrocycles has been prepared (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The MOMIP presents good fluorescence properties and is very stable in serum. The bimodal probe was conjugated to trastuzumab, and an optical in vivo study showed high accumulation of the imaging agent at the tumor site. 111In radiometallation of the bioconjugate was performed in high radiochemical yield, highlighting the potential of this new BODIPY‐chelators derivative as a bimodal imaging probe.  相似文献   

5.
A series of π‐extended distyryl‐substituted boron dipyrromethene (BODIPY) derivatives with intense far‐red/near‐infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye’s performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid‐state fluorescence was observed for one of the distyryl‐substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano‐onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The far‐red/NIR‐fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high‐resolution transmission electron microscopy, and confocal microscopy.  相似文献   

6.
The simultaneous discrimination of Cys, Hcy, and GSH by a single probe is still an unmet challenge. The design and synthesis of a small molecule probe MeO‐BODIPY‐Cl (BODIPY=boron dipyrromethene) is presented, which can allow Cys, Hcy, and GSH to be simultaneously discriminated on the basis of three distinct fluorescence turn‐on responses. The probe reacts with these thiols to form sulfenyl‐substituted BODIPY, which is followed by intramolecular displacement to yield amino‐substituted BODIPY. The kinetic rate of the intramolecular displacement reaction determines the observed different sensing behavior. Therefore, the probe responds to Cys, Hcy, and GSH with fluorescence turn‐on colors of yellow, yellow and red, and red, respectively. With this promising feature in hand, the probe was successfully used in imaging of Cys, Hcy and GSH in living cells.  相似文献   

7.
Analytical methods that enable visualization of nanomaterials derived from solution self‐assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization‐driven block copolymer (BCP) self‐assembly in organic media at the sub‐diffraction scale. Four different dyes were successfully used for single‐colour super‐resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual‐colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well‐established for aqueous systems, the results highlight the potential of super‐resolution microscopy techniques for the interrogation of self‐assembly processes in organic media.  相似文献   

8.
In recent years, a number of approaches have emerged that enable far‐field fluorescence imaging beyond the diffraction limit of light, namely super‐resolution microscopy. These techniques are beginning to profoundly alter our abilities to look at biological structures and dynamics and are bound to spread into conventional biological laboratories. Nowadays these approaches can be divided into two categories, one based on targeted switching and readout, and the other based on stochastic switching and readout of the fluorescence information. The main prerequisite for a successful implementation of both categories is the ability to prepare the fluorescent emitters in two distinct states, a bright and a dark state. Herein, we provide an overview of recent developments in super‐resolution microscopy techniques and outline the special requirements for the fluorescent probes used. In combination with the advances in understanding the photophysics and photochemistry of single fluorophores, we demonstrate how essentially any single‐molecule compatible fluorophore can be used for super‐resolution microscopy. We present examples for super‐resolution microscopy with standard organic fluorophores, discuss factors that influence resolution and present approaches for calibration samples for super‐resolution microscopes including AFM‐based single‐molecule assembly and DNA origami.  相似文献   

9.
Live‐cell labeling, super‐resolution microscopy, single‐molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N‐nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA‐based small interaction pairs described so far. Coupled to bright organic fluorophores with fine‐tuned photophysical properties, the super‐chelator probes were delivered into human cells by chemically gated nanopores. These super‐chelators permit kinetic profiling, multiplexed labeling of His6‐ and His12‐tagged proteins as well as single‐molecule‐based super‐resolution imaging.  相似文献   

10.
Photoactivatable fluorophores are useful tools in live‐cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle‐specific live‐cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water‐soluble, non‐cytotoxic, cell‐permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre‐activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single‐cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single‐ or multi‐cell labeling experiments.  相似文献   

11.
We synthesized a boron‐dipyrromethene (BODIPY)/Nile Red hybrid probe capable of selectively recognizing fluidity changes in the endoplasmic reticulum (ER) membrane due to its preferential localization to the ER and strong energy transfer from BODIPY to the Nile Red moiety, emitting only in nonaqueous environments. ER membrane fluidity in HepG2 cells was markedly reduced by a cell model of metabolic syndrome.  相似文献   

12.
BODIPY (boron dipyrromethene) derivatives and iron complexes are two types of functional compounds that have found wide applications in the fields of biology and medicine. The new class of cyclometalated Fe(II) complex with NCN pincer and meso‐phenyl‐4'‐ethynyl‐2,2':6',2”‐terpyridine BODIPY ligands of formula [Fe(L)(tpy‐BODIPY)] , 1, in which HL:5‐methoxy‐1,3‐bis (1‐methyl‐1H‐benzo[d]imidazol‐2‐yl)benzene, tpy‐BODIPY: 8‐(4‐phenyl‐4'‐ethynyl‐2,2':6',2”‐terpyridine) BODIPY, has been synthesized and studied as mitochondria‐targeted photodynamic therapy (PDT). Complex 1 showed photocytotoxicity in HeLa cells at 500 nm with low dark toxicity. The phototoxicity of complex 1 on the nontumorigenic MRC‐5 cell line showed the same trend observed for HeLa cells, that is moderately photocytotoxic against the nontumorigenic MRC‐5 cell line (IC50 = 36.21 μM). Moreover, complex 1 selectively localizes into mitochondria of the HeLa cells. The photophysical properties, cellular uptake, reactive oxygen species (ROS) generation, and cellular apoptosis of complex 1 have also been studied.Overall, the new Fe(II) complex with BODIPY moiety is significantly photocytotoxic in HeLa cells when irradiated with visible light of 500 nm giving as mitochondria targeting. Therefore, we present cyclometalated Fe(II) pincer complex induced mitochondria‐targeted PDT involving the BODIPY moiety that develops persuasively designed photoactivatable Fe(II) complexes.  相似文献   

13.
Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and stability over several months. As a proof of concept for super‐resolution applications, we use nanographenes in SMLM to generate 3D super‐resolution images of silica nanocracks. Our findings open the door for the widespread application of nanographenes in super‐resolution fluorescence microscopy.  相似文献   

14.
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single‐molecule limit in 1989 using frequency‐modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super‐resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super‐resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.  相似文献   

15.
To establish the structure–catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three‐dimensional (3D) distribution of active sites on a single catalyst is essential. Single‐particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high‐resolution super‐localization imaging of single fluorescent molecules produced at active sites on the core‐shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well‐defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano‐ and mesoscale structures.  相似文献   

16.
17.
A new design for fluorescence probes of esterase activity that features a carboxylate‐side pro‐fluorophore is demonstrated with boron dipyrromethene (BODIPY)‐based probes 1 a and 1 b . Because the design relies on the enzyme‐catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol‐side profluorophore‐based probes, large signal‐to‐noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real‐time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium.  相似文献   

18.
There is a persistent need for small‐molecule fluorescent labels optimized for single‐molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red‐shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed “DCDHF” fluorophores, for use in live‐cell imaging based on the push–pull design: an amine donor group and a 2‐dicyanomethylene‐3‐cyano‐2,5‐dihydrofuran (DCDHF) acceptor group, separated by a π‐rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red‐emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low‐intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small‐molecule fluorophores, which are needed for super‐resolution imaging schemes that require active control (here turning‐on) of single‐molecule emission.  相似文献   

19.
Far‐red organic fluorophores commonly used in traditional and super‐resolution localization microscopy are found to contain a fluorescent impurity with green excitation and near‐red emission. This near‐red fluorescent impurity can interfere with some multicolor stochastic optical reconstruction microscopy/photoactivated localization microscopy measurements in live cells and produce subtle artifacts in chemically fixed cells. We additionally describe alternatives to avoid artifacts in super‐resolution localization microscopy.  相似文献   

20.
A series of meso‐substituted boron‐bipyrromethene (BODIPY) dyes are synthesized and their laser and photophysical properties systematically studied. Laser emission covering a wide visible spectral region (from blue to orange) is obtained by just changing the electron donor character of the heteroatom at position 8. The additional presence of methyl groups at positions 3 and 5 results in dyes with a photostability similar to that of the unsubstituted dye but with much improved efficiency. Correlation of the lasing properties of the different dyes to their photophysical properties provides inklings to define synthetic strategies of new BODIPY dyes with enhanced efficiency and modulated wavelength emission over the visible spectral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号