首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1?xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.  相似文献   

2.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

3.
This work documents the behaviour of the positive secondary ion yield of bulk polytetrafluoroethylene (PTFE) under dual‐beam depth profiling conditions employing 1 keV Ar+, Cs+ and SF5+. A unique chemical interaction is observed in the form of a dramatic enhancement of the positive secondary ion yield when PTFE is dual‐beam profiled with 1 keV Cs+. The distinct absence of such an enhancement is noted for comparison on two non‐fluorinated polymers, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The bulk PTFE was probed using 15‐keV, 69Ga+ primary ions in dual beam mode under static conditions; 1‐keV Ar+ (a non‐reactive, light, noble element), Cs+ (a heavier metallic ion known to form clusters) and SF5+ (a polyatomic species) served as the sputter ion species. The total accumulated primary ion dose was of the order of 1015 ions/cm2, which is well beyond the static limit. The enhancement of the positive secondary yield obtained when profiling with 1‐keV Cs+ far exceeds that obtained when SF5+ is employed. An explanation of this apparent reactive ion effect in PTFE is offered in terms of polarisation of C? F bonds by Cs+ in the vicinity of the implantation site thereby predisposing them to facile scission. The formation of peculiar, periodic CsxFy+ (where y = x ? 1) and CsxCyFz+ clusters that can extend to masses approaching 2000 amu are also observed. Such species may serve as useful fingerprints for fluorocarbons that can be initiated via pre‐dosing a sample with low‐energy Cs+ prior to static 15‐keV Ga+ analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

5.
Low‐dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead‐free (C4H14N2)2In2Br10 single crystal with a unique zero‐dimensional (0D) structure constituted by [InBr6]3? octahedral and [InBr4]? tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 μs. Computational and experimental studies unveil that an excited‐state structural distortion in [InBr6]3? octahedral units enables the formation of intrinsic self‐trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs‐TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long‐lived and broad STE‐based emission behavior.  相似文献   

6.
Mn4+‐doped fluoride phosphors have been widely used in wide‐gamut backlighting devices because of their extremely narrow emission band. Solid solutions of Na2(SixGe1?x)F6:Mn4+ and Na2(GeyTi1?y)F6:Mn4+ were successfully synthesized to elucidate the behavior of the zero‐phonon line (ZPL) in different structures. The ratio between ZPL and the highest emission intensity υ6 phonon sideband exhibits a strong relationship with luminescent decay rate. First‐principles calculations are conducted to model the variation in the structural and electronic properties of the prepared solid solutions as a function of the composition. To compensate for the limitations of the Rietveld refinement, electron paramagnetic resonance and high‐resolution steady‐state emission spectra are used to confirm the diverse local environment for Mn4+ in the structure. Finally, the spectral luminous efficacy of radiation (LER) is used to reveal the important role of ZPL in practical applications.  相似文献   

7.
Low‐dimensional ns2‐metal halide compounds have received immense attention for applications in solid‐state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+, and a stable inorganic luminescent material has yet to be found. Here, the zero‐dimensional Rb7Sb3Cl16 phase, comprised of isolated [SbCl6]3? octahedra and edge‐sharing [Sb2Cl10]4? dimers, shows room‐temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature‐dependent PL lifetime rivals that of previous low‐dimensional materials with a specific temperature sensitivity above 0.06 K?1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7Bi3?3xSb3xCl16 (x≤1) family, we present the edge‐shared [Sb2Cl10]4? dimer as a design principle for Sb‐based luminescent materials.  相似文献   

8.
An (oxy)nitride‐based heterostructure for powdered Z‐scheme overall water splitting is presented. Compared with the single MgTa2O6?xNy or TaON photocatalyst, a MgTa2O6?xNy /TaON heterostructure fabricated by a simple one‐pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt‐loaded MgTa2O6?xNy /TaON as a H2‐evolving photocatalyst, a Z‐scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8 % at 420 nm was constructed (PtOx‐WO3 and IO3?/I? pairs were used as an O2‐evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt‐TaON or Pt‐MgTa2O6?xNy as a H2‐evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z‐scheme overall water splitting systems ever reported.  相似文献   

9.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

10.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

11.
A unique example of discrete molecular entity NdyErxYb3?(x+y)Q9 ( 1 ) (Q=quinolinolato) containing three different lanthanides simultaneously emitting in three different spectral regions in the NIR, ranging from 900 to 1600 nm, has been synthesized and fully chararacterized. A simple molecular strategy based on tuning metal composition in the Ln3Q9 framework, which contains inequivalent central and terminal coordination sites, has allowed a satisfactory ion‐size‐driven control of molecular speciation close to 90 %. In 1 the central position of the larger Nd ion is well distinguished from the terminal ones of the smaller Yb3+ and Er3+, which are almost “vicariants” as found in the heterobimetallic ErxYb3?xQ9 ( 2 ). The Ln3Q9 molecular architecture, which allows communication between the ions, has proved to afford multiple NIR emission in 1 and 2 , and is promising to develop a variety of multifunctional materials through the variation of the Ln composition.  相似文献   

12.
We report a new dicalcium silicate phosphor, Ca2?xEuxSiO4, which emits red light in response to blue‐light excitation. When excited at 450 nm, deep‐red emission at 650 nm was clearly observed in Ca1.2Eu0.8SiO4, the external and internal quantum efficiencies of which were 44 % and 50 %, respectively. The red emission from Ca2?xEuxSiO4 was strongly related to the peculiar coordination environments of Eu2+ in two types of Ca sites. The red‐emitting Ca2SiO4:Eu2+ phosphors are promising materials for next‐generation, white‐light‐emitting diode applications.  相似文献   

13.
Low‐dimensional metal halides have recently attracted extensive attention owing to their unique structure and photoelectric properties. Herein, we report the colloidal synthesis of all‐inorganic low‐dimensional cesium copper halide nanocrystals (NCs) by adopting a hot‐injection approach. Using the same reactants and ligands, but different reaction temperatures, both 1D CsCu2I3 nanorods and 0D Cs3Cu2I5 NCs can be prepared. Density functional theory indicates that the reduced dimensionality in 1D CsCu2I3 compared to 0D Cs3Cu2I5 makes the excitons more localized, which accounts for the strong emission of 0D Cs3Cu2I5 NCs. Subsequent optical characterization reveals that the highly luminescent, strongly Stokes‐shifted broadband emission of 0D Cs3Cu2I5 NCs arises from the self‐trapped excitons. Our findings not only present a method to control the synthesis of low‐dimensional cesium copper halide nanocrystals but also highlight the potential of 0D Cs3Cu2I5 NCs in optoelectronics.  相似文献   

14.
The structure of caesium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate (CsA), Cs+·C8HN4O2, is related to its luminescence properties. The structure of CsA (triclinic, P) is not isomorphous with previously reported structures (monoclinic, P21/c) of the KA and RbA salts. Nevertheless, the coordination numbers of the metals are equal for all salts (nine). Each anion in the CsA salt is connected by pairs of inversion‐related N—H...O hydrogen bonds to another anion, forming a centrosymmetric dimer. The dimers are linked into infinite ribbons, stacked by means of π–π interactions, thus building up an anionic wall. Time‐dependent density functional theory calculations show that the formation of the dimer shifts the wavelength of the luminescence maximum to the blue region. Shortening the distance between stacked anions in the row [from 3.431 (5) Å for RbA to 3.388 (2) Å for KA to 3.244 (10) Å for CsA] correlates with a redshift of the luminescence maximum from 574 and 580 nm to 596 nm, respectively.  相似文献   

15.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6材料发射中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

16.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   

17.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6-3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.  相似文献   

18.
A new potassium dysprosium polyborate, K3DyB6O12, has been prepared via the high‐temperature molten salt method and structurally characterized by single‐crystal X‐ray diffraction analysis. The structure can be described as a three‐dimensional framework composed of isolated bicyclic [B5O10]5? groups and Dy3+ and K+ ions. The Fourier transform IR (FT–IR) and ultraviolet–visible (UV–Vis) spectra were investigated. A series of K3Gd1–xDyxB6O12 phosphors was prepared and their photoluminescence properties were studied. The K3Gd1–xDyxB6O12 phosphors exhibit a strong yellow emission band at 577 nm (the 4F9/26H13/2 transition of Dy3+) under UV excitation of 275 nm (the 8S7/26IJ transition of Gd3+), suggesting the occurrence of the energy transfer Gd3+→Dy3+. The optimized doping concentration of the Dy3+ ion was 8 mol%. We may expect that K3Gd1–xDyxB6O12 is a promising pale‐yellow emission phosphor for visual displays or solid‐state lighting.  相似文献   

19.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射谱和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6发出中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

20.
Volvox‐like CdxZn1?xS solid solutions with a cubic zinc blend structure were synthesized through a template‐free ethylene glycol process. Cd(Ac)2 ? 2 H2O, Zn(Ac)2 ? 2 H2O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox‐like spherical geometry, but also exerted vigorous domination for existence of cubic‐phase CdxZn1?xS nanostructures. As‐prepared volvox‐like CdxZn1?xS nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible‐light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m2 g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号