首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
CRISPR–Cas9 represents a promising platform for genome editing, yet means for its safe and efficient delivery remain to be fully realized. A novel vehicle that simultaneously delivers the Cas9 protein and single guide RNA (sgRNA) is based on DNA nanoclews, yarn‐like DNA nanoparticles that are synthesized by rolling circle amplification. The biologically inspired vehicles were efficiently loaded with Cas9/sgRNA complexes and delivered the complexes to the nuclei of human cells, thus enabling targeted gene disruption while maintaining cell viability. Editing was most efficient when the DNA nanoclew sequence and the sgRNA guide sequence were partially complementary, offering a design rule for enhancing delivery. Overall, this strategy provides a versatile method that could be adapted for delivering other DNA‐binding proteins or functional nucleic acids.  相似文献   

2.
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound‐powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA‐loaded nanomotors to directly penetrate through the plasma membrane of GFP‐expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA‐loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor‐based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.  相似文献   

3.
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.  相似文献   

4.
We have developed an ingenious method, termed Cas9 nickase‐based amplification reaction (Cas9nAR), to amplify a target fragment from genomic DNA at a constant temperature of 37 °C. Cas9nAR employs a sgRNA:Cas9n complex with a single‐strand nicking property, a strand‐displacing DNA polymerase, and two primers bearing the cleavage sequence of Cas9n, to promote cycles of DNA replication through priming, extension, nicking, and displacement reaction steps. Cas9nAR exhibits a zeptomolar limit of detection (2 copies in 20 μL of reaction system) within 60 min and a single‐base discrimination capability. More importantly, the underlying principle of Cas9nAR offers simplicity in primer design and universality in application. Considering the superior sensitivity and specificity, as well as the simple‐to‐implement, rapid, and isothermal features, Cas9nAR holds great potential to become a routine assay for the quantitative detection of nucleic acids in basic and applied studies.  相似文献   

5.
CRISPR/Cas is a revolutionary gene editing technology with wide‐ranging utility. 1 The safe, non‐viral delivery of CRISPR/Cas components would greatly improve future therapeutic utility. 1e We report the synthesis and development of zwitterionic amino lipids (ZALs) that are uniquely able to (co)deliver long RNAs including Cas9 mRNA and sgRNAs. ZAL nanoparticle (ZNP) delivery of low sgRNA doses (15 nm ) reduces protein expression by >90 % in cells. In contrast to transient therapies (such as RNAi), we show that ZNP delivery of sgRNA enables permanent DNA editing with an indefinitely sustained 95 % decrease in protein expression. ZNP delivery of mRNA results in high protein expression at low doses in vitro (<600 pM) and in vivo (1 mg kg−1). Intravenous co‐delivery of Cas9 mRNA and sgLoxP induced expression of floxed tdTomato in the liver, kidneys, and lungs of engineered mice. ZNPs provide a chemical guide for rational design of long RNA carriers, and represent a promising step towards improving the safety and utility of gene editing.  相似文献   

6.
We developed a new method for the conditional regulation of CRISPR/Cas9 activity in mammalian cells and zebrafish embryos using photochemically activated, caged guide RNAs (gRNAs). Caged gRNAs are generated by substituting four nucleobases evenly distributed throughout the 5′‐protospacer region with caged nucleobases during synthesis. Caging confers complete suppression of gRNA:dsDNA‐target hybridization and rapid restoration of CRISPR/Cas9 function upon optical activation. This tool offers simplicity and complete programmability in design, high spatiotemporal specificity in cells and zebrafish embryos, excellent off‐to‐on switching, and stability by preserving the ability to form Cas9:gRNA ribonucleoprotein complexes. Caged gRNAs are novel tools for the conditional control of gene editing, thereby enabling the investigation of spatiotemporally complex physiological events by obtaining a better understanding of dynamic gene regulation.  相似文献   

7.
CRISPR/Cas9 system is a powerful toolbox for gene editing. However, the low delivery efficiency is still a big hurdle impeding its applications. Herein, we report a strategy to deliver Cas9‐sgPlk‐1 plasmids (CP) by a multifunctional vehicle for tumor therapy. We condensed CPs on TAT peptide‐modified Au nanoparticles (AuNPs/CP, ACP) via electrostatic interactions, and coated lipids (DOTAP, DOPE, cholesterol, PEG2000‐DSPE) on the ACP to form lipid‐encapsulated, AuNPs‐condensed CP (LACP). LACP can enter tumor cells and release CP into the cytosol by laser‐triggered thermo‐effects of the AuNPs; the CP can enter nuclei by TAT guidance, enabling effective knock‐outs of target gene (Plk‐1) of tumor (melanoma) and inhibition of the tumor both in vitro and in vivo. This AuNPs‐condensed, lipid‐encapsulated, and laser‐controlled delivery system provides a versatile method for high efficiency CRISPR/Cas9 delivery and targeted gene editing for treatment of a wide spectrum of diseases.  相似文献   

8.
Currently CRISPR/Cas9 is a widely used efficient tool for gene editing. Precise control over the CRISPR/Cas9 system with high temporal and spatial resolution is essential for studying gene regulation and editing. Here, we synthesized a novel light-controlled crRNA by coupling vitamin E and a photolabile linker at the 5′ terminus to inactivate the CRISPR/Cas9 system. The vitamin E modification did not affect ribonucleoprotein (RNP) formation of Cas9/crRNA/tracrRNA complexes but did inhibit the association of RNP with the target DNA. Upon light irradiation, vitamin E-caged crRNA was successfully activated to achieve light-induced genome editing of vascular endothelial cell-growth factor A (VEGFA) in human cells through a T7E1 assay and Sanger sequencing as well as gene knockdown of EGFP expression in EGFP stably expressing cells. This new caging strategy for crRNA could provide new methods for spatiotemporal photoregulation of CRISPR/Cas9-mediated gene editing.  相似文献   

9.
Antibodies are important biopharmaceuticals, but almost all existing antibody‐based drugs are limited to targeting antigens located at the cell exterior because of the inability of antibodies to enter the cell interior. Available methods for intracellular delivery of antibodies have major shortcomings. Herein, we report an approach to encapsulate native antibodies in a biodegradable silica nanoquencher (BS‐qNP), which could undergo efficient cellular uptake and intracellular degradation to release antibodies only under hypoxic conditions. By coating the surface of BS‐qNP with cell‐penetrating poly(disulfide)s (CPD), the delivered antibodies (or other proteins) avoided endolysosomal trapping. Doping of the silica coating with a fluorescent dye and a dark hole quencher further endowed BS‐qNP with hypoxia‐responsive fluorescence turn‐on property. Our antibody delivery system thus provides the first platform capable of stable encapsulation, efficient uptake, on‐demand antibody release, and imaging of release/cell state.  相似文献   

10.
A series of benzophenone derivatives (N‐BPs) containing tertiary amine group used as hydrogen abstraction‐type (type II) photoinitiators were synthesized through the addition reaction of secondary amines with 4‐(2,3‐epoxypropyloxy) benzophenone. The chemical structures were characterized with 1H NMR, FTIR spectroscopy, and UV spectrum measurements. The N‐BPs showed the higher absorption in 300–400 nm than benzophenone (BP). The photoinitiating activity was examined based on the photopolymerization of 1,6‐hexanediol diacrylate using photo‐DSC method. The results showed that the photoinitiating efficiency was negatively affected by the molecular structure of alkyl group connected to the tertiary amine with the order of isopropyl (N‐BPI) < methyl (N‐BPM) < ethyl (N‐BPE) < propyl (N‐BPP). Moreover, the diethanolamine‐modified benzophenone derivative (N‐BPOH) had the highest‐photoinitiating efficiency for free radical polymerization systems among the N‐BPs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A novel bis[benzyl‐N′‐hydrazinecarbodithioato‐κ2 N′,S]nickel(II) complex was synthesized and characterized by means of various physical, chemical, and spectroscopic techniques. The X‐ray single crystal diffraction analysis indicated two independent close comparable bis‐chelated square planar complexes of trans‐configuration, where S‐benzyl dithiocarbazate (SBDTC) ligand is coordinated via N,S‐donor set. The complex is able to inhibit Ehrlich ascites carcinoma (EAC) cell proliferation by 51.81% and 75.75%, with 0.3 and 50 mg kg?1 (dose adjusted) dose, respectively, administered intraperitoneally for five successive days in mice model. Apoptotic cell morphological changes were examined using optical and fluorescence microscopy techniques. Expression pattern of apoptosis regulatory genes in EAC cells treated with the synthesized nickel(II) complex for five consecutive days showed an increased expression of P53, Bax, Cas‐8, Cas‐9, Cas‐3, Cyt‐c, and TNF‐α proapoptotic genes and decreased expression of antiapoptotic Bcl‐2 gene. The Ni(II) complex and Bleomycin (standard drug) were used in molecular docking coupled with molecular dynamics simulation studies with the aim to support the experimental results and to investigate the apoptotic effect towards the targeting apoptotic genes. Both experimental and computational studies reveal that the nickel(II) complex inhibits EAC cells growth successfully, suggesting a potential compound for cancer treatment.  相似文献   

12.
The cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.  相似文献   

13.
Microcarrier‐based stem cell expansion cultures can increase the dimensions of in vitro stem cell cultures from 2D to 3D. The culture handling process then becomes more efficient compared with conventional 2D cultures. However, the use of spherical plastic microcarriers complicates the monitoring of cell culture. To facilitate monitoring, transparent disc‐shaped microcarriers are manufactured using a light‐initiated microfluidic printing system and the obtained microcarriers are named as 2.5D microcarrier. The 2.5D microcarriers (diameter/height ≈ 5) enable us to use conventional monitoring tools in 2D‐based platform during the in vitro expansion on a 3D culture platform. Surface modification via a 1 h‐long poly‐dopamine (PDA) reaction can maintain the transparent nature of the microcarriers while optimizing the cell attachment. The surface marker expression and differentiation potential of the 2.5D microcarrier‐expanded stem cells reveal that the characteristics and functionalities preserved during expansion. The 2.5D microcarrier is readily integrated into an on‐bead assay to conserve reagents and permit a high number (n = 9) of repeated measurements with reliable results. These results demonstrate that the 2.5D microcarrier‐based scale‐up culture provides a valuable tool for the in vitro expansion of adherent stem cells, especially if repetitive monitoring is required.  相似文献   

14.
15.
An analytical method that enables detection and quantification of bromophenols (BPs) at taste threshold concentrations (2,6-DBP: 0.5 ng/L) was developed. This method involves conversion of the BPs to their acetates, followed by isolation of the acetates by a modified purge-and-trap procedure, and analysis by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Bromophenyl acetates were synthesized so that each of the two steps in the method could be developed and optimised in isolation to the other. Deuterated BPs (phenol-d5, 2-BP-d4, 4-BP-d2, 2,6-DBP-d3, 2,4-DBP-d3 and 2,4,6-TBP-d2) were synthesized to enable quantification of analytes using the deuterated analogues of analytes as internal standards. This method allowed quantification of BPs at concentrations ranging from the detection limits (3 ng/L for phenol and 0.1-0.5 ng/L for each of the BPs) to 1000 ng/L for each analyte, with repeatabilities of < or =14% (RSD) for concentrations of 1 ng/L and < or =9% (RSD) for concentrations of 10-1000 ng/L, with recoveries ranging from 91 to 97%.  相似文献   

16.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

17.
The biodegradable inorganic nanovector based on a layered double hydroxide (LDH) holds great promise for gene and drug delivery systems. However, in vivo targeted delivery of genes through LDH still remains a key challenge in the development of RNA interference therapeutics. Here, we describe in vivo and in vitro delivery system for Survivin siRNA (siSurvivin) assembled with passive LDH with a particle size of 100 nm or active LDH conjugated with a cancer overexpressing receptor targeting ligand, folic acid (LDHFA), conferring them an ability to target the tumor by either EPR‐based clathrin‐mediated or folate receptor‐mediated endocytosis. When not only transfected into KB cells but also injected into xenograft mice, LDHFA/siSurvivin induced potent gene silencing at mRNA and protein levels in vitro, and consequently achieved a 3.0‐fold higher suppression of tumor volume than LDH/siSurvivin in vivo. This anti‐tumor effect was attributed to a selectively 1.2‐fold higher accumulation of siSurvivin in tumor tissue compared with other organs. Targeting to the tumor with inorganic nanovector can guide and accelerate an evolution of next‐generation theranosis system.  相似文献   

18.
A novel electrochemical magnetoimmunosensor for fast and ultrasensitive detection of H9N2 avian influenza virus particles (H9N2 AIV) was designed based on the combination of high‐efficiency immunomagnetic separation, enzyme catalytic amplification, and the biotin–streptavidin system. The reusable, homemade magneto Au electrode (M‐AuE) was designed and used for the direct sensing. Immunocomplex‐coated magnetic beads (IMBs) were easily accumulated on the surface of the M‐AuE to obtain the catalytically reduced electrochemical signal of H2O2 after the immunoreaction. The transducer was regenerated through a simple washing procedure, which made it possible to detect all the samples on a single electrode with higher reproducibility. The magnetic‐bead‐based electrochemical immunosensor showed better analytical performance than the planar‐electrode‐based immunosensor with the same sandwich construction. Amounts as low as 10 pg mL?1 H9N2 AIV could be detected even in samples of chicken dung. This electrochemical magnetoimmunosensor not only provides a simple platform for the detection of the virus with high sensitivity, selectivity, and reproducibility but also shows great potential in the early diagnosis of diseases.  相似文献   

19.
Herein we report a CRISPR‐Cas9‐mediated loss‐of‐function kinase screen for cancer cell deformability and invasive potential in a high‐throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted in cells becoming more deformable and invasive. High‐ranking candidates identified included well‐reported tumor suppressor kinases, such as chk2, IKK‐α, p38 MAPKs, and DAPK2. A high‐ranking candidate STK4 was chosen for functional validation and identified to play an important role in the regulation of cell deformability and tumor suppression. Collectively, we have demonstrated that CRISPR‐based on‐chip mechanical screening is a potentially powerful strategy to facilitate systematic genetic analyses.  相似文献   

20.
Reduction sensitive linkers (RSLs) have the potential to transform the field of drug delivery due to their ease of use and selective cleavage in intracellular environments. However, despite their compelling attributes, developing reduction sensitive self-immolative linkers for aliphatic amines has been challenging due to their poor leaving group ability and high pKa values. Here a traceless self-immolative linker composed of a dithiol-ethyl carbonate connected to a benzyl carbamate (DEC) is presented, which can modify aliphatic amines and release them rapidly and quantitatively after disulfide reduction. DEC was able to reversibly modify the lysine residues on CRISPR–Cas9 with either PEG, the cell penetrating peptide Arg10, or donor DNA, and generated Cas9 conjugates with significantly improved biological properties. In particular, Cas9–DEC–PEG was able to diffuse through brain tissue significantly better than unmodified Cas9, making it a more suitable candidate for genome editing in animals. Furthermore, conjugation of Arg10 to Cas9 with DEC was able to generate a self-delivering Cas9 RNP that could edit cells without transfection reagents. Finally, conjugation of donor DNA to Cas9 with DEC increased the homology directed DNA repair (HDR) rate of the Cas9 RNP by 50% in HEK 293T cell line. We anticipate that DEC will have numerous applications in biotechnology, given the ubiquitous presence of aliphatic amines on small molecule and protein therapeutics.

Reduction sensitive linkers (RSLs) have the potential to transform the field of drug delivery due to their ease of use and selective cleavage in intracellular environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号