首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The equilibrium geometric structures, stabilities, and electronic properties of bimetallic Au(n)Cs (n = 1-10) and pure gold Au(n) (n ≤ 11) clusters have been systematically investigated by using density functional theory with meta-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au(n-1)Cs structures and Cs atom capped Au(n) structures for different sized Au(n)Cs (n = 1-10) clusters are two dominant growth patterns. Theoretical calculated results indicate that the most stable isomers have three-dimensional structures at n = 4 and 6-10. Averaged atomic binding energies, fragmentation energies, and second-order difference of energies exhibit a pronounced even-odd alternations phenomenon. The same even-odd alternations are found in the highest occupied-lowest unoccupied molecular orbital gaps, vertical ionization potential, vertical electron affinity, and hardnesses. In addition, it is found that the charge in corresponding Au(n)Cs clusters transfers from the Cs atom to the Au(n) host in the range of 0.851-1.036 electrons.  相似文献   

2.
The stability and structures of titanium-doped gold clusters Au(n)Ti (n=2-16) are studied by the relativistic all-electron density-functional calculations. The most stable structures for Au(n)Ti clusters with n=2-7 are found to be planar. A structural transition of Au(n)Ti clusters from two-dimensional to three-dimensional geometry occurs at n=8, while the Au(n)Ti (n=12-16) prefer a gold cage structure with Ti atom locating at the center. Binding energy and second-order energy differences indicate that the Au(14)Ti has a significantly higher stability than its neighbors. A high ionization potential, low electron affinity, and large energy gap being the typical characters of a magic cluster are found for the Au(14)Ti. For cluster-cluster interaction between magic transition-metal-doped gold clusters, calculations were performed for cluster dimers, in which the clusters have an icosahedral or nonicosahedral structure. It is concluded that both electronic shell effect and relative orientation of clusters are responsible for the cluster-cluster interaction.  相似文献   

3.
Photoelectron spectra of low temperature silicon doped gold cluster anions Au(n)Si(-) with n = 2-56 and silver cluster anions Ag(n)Si(-) with n = 5-82 have been measured. Comparing the spectra as well as the general size dependence of the electron detachment energies to the results on undoped clusters shows that the silicon atom changes the apparent free electron count in the clusters. In the case of larger gold clusters (with more than about 30 gold atoms) the silicon atom seems to consistently delocalize all of its four valence electrons, while in the case of the silver clusters a less uniform behavior is observed. Here the silicon atoms act partly as electron donors, partly as electron acceptors, without following an obvious simple principle. Additionally some structural information can be obtained from the measured spectra: while Ag(54)Si(-) seems to adopt an icosahedral structural motif, Au(54)Si(-) seems to take on a low symmetry structure, much like the corresponding pure 55 atom clusters. This indicates that for such larger clusters the incorporation of a single silicon atom does not change the ground state geometry significantly.  相似文献   

4.
Au(2)H(-) was recognized and confirmed as a minor contamination to typical photoelectron spectra of Au(2) (-), produced by laser vaporization of a pure Au target using an ultrahigh purity helium carrier gas. The hydrogen source was shown to be from trace H impurities present in the bulk gold target. Carefully designed experiments using H(2)- and D(2)-seeded helium carrier gas were used to study the electronic structure of Au(2)H(-) and Au(2)D(-) using photoelectron spectroscopy and density functional calculations. Well-resolved photoelectron spectra with vibrational resolution were obtained for Au(2)H(-) and Au(2)D(-). Two isomers were observed both experimentally and theoretically. The ground state of Au(2)H(-) turned out to be linear with a terminal H atom [Au-Au-H](-) ((1)A(1),C(infinity v)), whereas a linear [Au-H-Au](-) ((1)A(1),D(infinity h)) structure with a bridging H atom was found to be a minor isomer 0.6 eV higher in energy. Calculated electron detachment energies for both isomers agree well with the experimental spectra, confirming their existence in the cluster beam. The observation and confirmation of H impurity in pure gold clusters and the 3.44 A Au-Au distance in the [Au-H-Au](-) isomer presented in the current work provide indirect experimental evidence that the anomalous 3.6 A Au-Au distances observed in gold nanowires is due to an "invisible" hydrogen impurity atom.  相似文献   

5.
During experiment on Au-B alloy clusters, an auro-boron oxide cluster Au2BO- was observed to be an intense peak dominating the Au-B mass spectra, along with weaker signals for AuBO- and Au3BO-. Well-resolved photoelectron spectra have been obtained for the three new oxide clusters, which exhibit an odd-even effect in electron affinities. Au2BO- is shown to be a closed shell molecule with a very high electron detachment energy, whereas AuBO and Au3BO neutrals are shown to be closed shell species with large HOMO-LUMO gaps, resulting in relatively low electron affinities. Density functional calculations were performed for both AunBO- (n = 1-3) and the corresponding HnBO- species to evaluate the analogy between bonding of gold and hydrogen in these clusters. The combination of experiment and theory allowed us to establish the structures and chemical bonding of these tertiary clusters. We find that the first gold atom does mimic hydrogen and interacts with the BO unit to produce a linear AuBO structure. This unit preserves its identity when interacting with additional gold atoms: a linear Au-[AuBO] complex is formed when adding one extra Au atom and two isomeric Au2-[AuBO] complexes are formed when adding two extra Au atoms. Since BO- is isoelectronic to CO, the AunBO- species can be alternatively viewed as Aun interacting with a BO- unit. The structures and chemical bonding in AunBO- are compared to those in the corresponding AunCO complexes.  相似文献   

6.
A systematic quantum chemical investigation on the electronic, geometric and energetic properties of Au(n)V clusters with n = 1-14 in both neutral and anionic states is performed using BP86/cc-pVTZ-PP calculations. Most clusters having an even number of electrons prefer a high spin state. For odd-electron systems, a quartet state is consistently favoured as the ground state up to Au(8)V. The larger sized Au(10)V, Au(12)V and Au(14)V prefer a doublet state. The clusters prefer 2D geometries up to Au(8)V involving a weak charge transfer. The larger systems bear 3D conformations with a more effective electron transfer from Au to V. The lowest-energy structure of a size Au(n)V is built upon the most stable form of Au(n-1)V. During the growth, V is endohedrally doped in order to maximize its coordination numbers and augment the charge transfer. Energetic properties, including the binding energies, embedding energies and second-order energy differences, show that the presence of a V atom enhances considerably the thermodynamic stability of odd-numbered gold clusters but reduces that of even-numbered systems. The atomic shape has an apparently more important effect on the clusters stability than the electronic structure. Especially, if both atomic shape and electronic condition are satisfied, the resulting cluster becomes particularly stable such as the anion Au(12)V(-), which can thus combine with the cation Au(+) to form a superatomic molecule of the type [Au(12)V]Au. Numerous lower-lying electronic states of these clusters are very close in energy, in such a way that DFT computations cannot clearly establish their ground electronic states. Calculated results demonstrate the existence of structural isomers with comparable energy content for several species including Au(9)V, Au(10)V, Au(13)V and Au(14)V.  相似文献   

7.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

8.
Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.  相似文献   

9.
The structural evolution of Au(n) (n=2, 3, 5, 7, 9, and 13) clusters and the adsorption of organic molecules such as acetone, acetaldehyde, and diethyl ketone on these clusters are studied using a density functional method. The detailed study of the adsorption of acetone on the Au(n) clusters reveals two main points. (1) The acetone molecule interacts with one gold atom of the gold clusters via the carbonyl oxygen. (2) This interaction is mediated through back donation mainly from the spd-hybridized orbitals of the interacting gold atom to the oxygen atom of the acetone molecule. In addition, a hydrogen bond is observed between a hydrogen atom of the methyl group and another gold atom (not involved in the bonding with carbonyl oxygen). Interestingly, the authors notice that the geometries of Au(9) and Au(13) undergo a significant flattening due to the adsorption of an acetone molecule. They have also investigated the role of the alkyl chain attached to the carbonyl group in the adsorption process by analyzing the interaction of Au(13) with acetaldehyde and diethyl ketone.  相似文献   

10.
利用密度泛函理论研究了Aun(n=2-9)团簇吸附一个乙醇分子的结构和电子性质. 研究结果表明: Aun(n=2-9)团簇的最稳定构型为二维平面结构, Au6团簇最稳定; 吸附过程是通过金团簇上一个特定的金原子与乙醇分子中氧原子相互作用完成, 形成了20种稳定构型; 金原子的配位数对吸附作用影响明显; 作为吸附主体的金团簇和被吸附的乙醇分子在吸附前后构型无明显变化, 它们之间为弱相互作用.  相似文献   

11.
The geometries, stabilities, electronic, and magnetic properties of AunSc clusters have been systematically investigated by density functional theory. The lowest energy structures of AunSc favor planar structure and the doped Sc atom does not disturb the frame of Aunclusters with n≤11. For n≥12, Sc atom is fully encapsulated by the Au cages. From theanalysis of the second-order energy difference, the fragmentation energies, vertical ionizationpotential, vertical electron affinity, and HOMO-LUMO gap, the clusters with odd Au atoms possess relatively higher stabilities than their neighbor size. The doping of Sc atom can greatly improve the stability and change the sequence of chemical activity for Aun. For n≤11, the total magnetic moments of AunSc appear the alternation between 0.00 and 1.00 μB. The total magnetic moments are quenched when Sc is trapped into the Au cages with n≥12.  相似文献   

12.
The bonding patterns between small neutral gold Au(3 < or = n < or = 7) and hydrogen fluoride (HF)(1 < or = m < or = 4) clusters are discussed using a high-level density functional approach. Two types of interactions, anchoring Au-F and F-H...Au, govern the complexation of these clusters. The F-H...Au interaction exhibits all the characteristics of nonconventional hydrogen bonding and plays a leading role in stabilizing the lowest-energy complexes. The anchor bonding mainly activates the conventional F-H...F hydrogen bonds within HF clusters and reinforces the nonconventional F-H...Au one. The strength of the F-H...Au bonding, formed between the terminal conventional proton donor group FH and an unanchored gold atom, depends on the coordination of the involved gold atom: the less it is coordinated, the stronger its nonconventional proton acceptor ability. The strongest F-H...Au bond is formed between a HF dimer and the singly coordinated gold atom of a T-shape Au4 cluster and is accompanied by a very large red shift (1023 cm(-1)) of the nu(F-H) stretch. Estimations of the energies of formation of the F-H...Au bonds for the entire series of the studied complexes are provided.  相似文献   

13.
The density functional method with relativistic effective core potential has been employed to investigate systematically the geometrical structures, relative stabilities, growth-pattern behaviors, and electronic properties of small bimetallic M(2)Au(n) (M = Ag, Cu; n = 1-10) and pure gold Au(n) (n ≤ 12) clusters. The optimized geometries reveal that M(2) substituted Au(n+2) clusters and one Au atom capped M(2)Au(n-1) structures are dominant growth patterns of the stable alloyed M(2)Au(n) clusters. The calculated averaged atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The analytic results exhibit that the planar structure Ag(2)Au(4) and Cu(2)Au(2) isomers are the most stable geometries of Ag(2)Au(n) and Cu(2)Au(n) clusters, respectively. In addition, the HOMO-LUMO gaps, charge transfers, chemical hardnesses and polarizabilities have been analyzed and compared further.  相似文献   

14.
A new stable structure has been found for the anion clusters of hydrogen fluoride. The ab initio method was used to optimize the structures of the (HF)(3)(-), (HF)(4)(-), (HF)(5)(-), and (HF)(6)(-) anion clusters with an excess "solvated" electron. Instead of the well-known "zig-zag" (HF)(n)(-) structure, a new form, (HF)(n-1)F(-)···H, was found with lower energy. In this new form, the terminal hydrogen atom in the (HF)(n)(-) chain is separated from the other part of the cluster and the inner hydrogens transfer along the hydrogen bonds toward the outside fluoride. The negative charge also transfers from the terminal HF molecule of the chain to the center fluoride atoms. The (HF)(n)(-) clusters for n = 4, 5, and 6 have not yet been observed experimentally. These results should assist in the search for these systems and also provide a possible way to study the proton and electron transfer in some large hydrogen bonding systems.  相似文献   

15.
The static polarizabilities and polarizability anisotropies of Cun,Agn and Aun (n≤9)clusters have been calculated by the B3LYP density functional method,which is a three parameter mixture of density functional and"exact" Hartree Fock exchange. The calculated results are compared with experimental polarizabilities of sodium clusters. It is shown that the size dependency of the static polarizabilities per atom of Cun,and Agn clusters possesses the same trend as that observed in sodium clusters exception of the Aunclusters while the polarizability of Au atom is much smaller than these of Cu and Ag.The(α-)of Au atom is the smallest and the(α-)per atom of Au approach to the values of Cu from the dimmer to the hexamer. It indicates that in Au clusters the electrons are more strongly attracted by the nuclei because of the more electrons. However,the absolute polarizabilities of the noble mental clusters are considerably smaller than those of the sodium clusters and the electronic structures of the noblemental are much more compact.  相似文献   

16.
In a previous communication, we showed that a single Au atom behaves like H in its bonding to Si in a series of Si-Au clusters, SiAu(n) (n = 2-4) (Kiran et al. Angew. Chem., Int. Ed. 2004, 43, 2125). In this article, we show that the H analogy of Au is more general. We find that the chemical bonding and potential energy surfaces of two disilicon Au clusters, Si(2)Au(2) and Si(2)Au(4), are analogous to Si(2)H(2) and Si(2)H(4), respectively. Photoelectron spectroscopy and ab initio calculations are used to investigate the geometrical and electronic structures of Si(2)Au(2)(-), Si(2)Au(4)(-), and their neutral species. The most stable structures for both Si(2)Au(2) and Si(2)Au(2)(-) are found to be C(2)(v), in which each Au bridges the two Si atoms. For Si(2)Au(4)(-), two nearly degenerate dibridged structures in a cis (C(2)(h)) and a trans (C(2)(v)) configuration are found to be the most stable isomers. However, in the neural potential energy surface of Si(2)Au(4), a monobridged isomer is the global minimum. The ground-state structures of Si(2)Au(2)(-) and Si(2)Au(4)(-) are confirmed by comparing the computed vertical detachment energies with the experimental data. The various stable isomers found for Si(2)Au(2) and Si(2)Au(4) are similar to those known for Si(2)H(2) and Si(2)H(4), respectively. Geometrical and electronic structure comparisons with the corresponding silicon hydrides are made to further establish the isolobal analogy between a gold atom and a hydrogen atom.  相似文献   

17.
Within density functional theory with the general gradient approximation for the exchange and correlation, the bimetallic clusters AuPt and Au(6)Pt have been studied for their structure and reactivity. The bond strength of AuPt lies between those of Au(2) and Pt(2), and it is closer to that of Au(2). The Pt atom is the reactive center in both AuPt and AuPt(+) according to electronic structure analysis. AuPt(+) is more stable than AuPt. Au(6)Pt prefers electronic states with low multiplicity. The most stable conformation of Au(6)Pt is a singlet and has quasi-planar hexagonal frame with Pt lying at the hexagonal center. The doping of Pt in Au cluster enhances the chemical regioselectivity of the Au cluster. The Pt atom essentially serves as electron donor and the Au atoms bonded to the Pt atom acts as electron acceptor in Au(6)Pt. The lowest triplet of edge-capped rhombus Au(6)Pt clusters is readily accessible with very small singlet-triplet energy gap (0.32 eV). O(2) prefers to adsorb on Au and CO prefers to adsorb on Pt. O(2) and CO have stronger adsorption on AuPt than they do on Au(6)Pt. CO has a much stronger adsorption on AuPt bimetallic cluster than O(2) does. The adsorption of CO on Pt modifies the geometry of AuPt bimetallic clusters.  相似文献   

18.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

19.
We use density functional theory to examine the electronic structure of small Au(n) (n=1-7) clusters, supported on a rutile TiO(2)(110) surface having oxygen vacancies on the surface (a partially reduced surface). Except for the monomer, the binding energy of all Au clusters to the partially reduced surface is larger by approximately 0.25 eV than the binding energy to a stoichiometric surface. The bonding site and the orientation of the cluster are controlled by the shape of the highest occupied molecular orbitals (HOMOs) of the free cluster (free cluster means a gas-phase cluster with the same geometry as the supported one). The bond is strong when the lobes of the HOMOs overlap with those of the high-energy states of the clean oxide surface (i.e., with no gold) that have lobes on the bridging and the in-plane oxygen atoms. In other words, the cluster takes a shape and a location that optimizes the contact of its HOMOs with the oxygen atoms. Fivefold coordinated Ti atoms located at a defect site (5c-Ti(*)) participate in the binding only when a protruding lobe of the singly occupied molecular orbital (for odd n) or the lowest unoccupied molecular orbital (for even n) of the free Au(n) cluster points toward a 5c-Ti(*) atom. The oxygen vacancy influences the binding energy of the clusters (except for Au(1)) only when they are in direct contact with the defect. The desorption energy and the total charge on clusters that are close to, but do not overlap with, the vacancy differ little from the values they have when the cluster is adsorbed on a stoichiometric surface. The behavior of Au(1) is rather remarkable. The atom prefers to bind directly to the vacancy site with a binding energy of 1.81 eV. However, it also makes a strong bond (1.21 eV) with any 5c-Ti atom even if that atom is far from the vacancy site. In contrast, the binding of a Au monomer to the 5c-Ti atom of a surface without vacancies is weak (0.45 eV). The presence of the vacancy activates the 5c-Ti atoms by populating states at the bottom of the conduction band. These states are delocalized and have lobes protruding out of the surface at the location of the 5c-Ti atoms. It is the overlap of these lobes with the highest orbital of the Au atom that is the major reason for the bonding to the 5c-Ti atom, no matter how far the latter is from the vacancy. The energy for breaking an adsorbed cluster into two adsorbed fragments is smaller than the kinetic energy of the mass-selected clusters deposited on the surface in experiments. However, this is not sufficient for breaking the cluster upon impact with the surface, since only a fraction of the available energy will go into the reaction coordinate for breakup.  相似文献   

20.
Negatively charged sodium auride clusters, NanAun- (n = 1-3), have been investigated experimentally using photoelectron spectroscopy and ab initio calculations. Well-resolved electronic transitions were observed in the photoelectron spectra of NanAun- (n = 1-3) at several photon energies. Very large band gaps were observed in the photoelectron spectra of the anion clusters, indicating that the corresponding neutral clusters are stable closed-shell species. Calculations show that the global minimum of Na2Au2- is a quasi-linear species with Cs symmetry. A planar isomer of D2h symmetry is found to be 0.137 eV higher in energy. The two lowest energy isomers of Na3Au3- consist of three-dimensional structures of Cs symmetry. The global minimum of Na3Au3- has a bent-flake structure lying 0.077 eV below a more compact structure. The global minima of the sodium auride clusters are confirmed by the good agreement between the calculated electron detachment energies of the anions and the measured photoelectron spectra. The global minima of neutral Na2Au2 and Na3Au3 are found to possess higher symmetries with a planar four-membered ring (D2h) and a six-membered ring (D3h) structure, respectively. The chemical bonding in the sodium auride clusters is found to be highly ionic with Au acting as the electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号