首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four Ib-type synthetic diamond crystals were studied by dynamic nuclear polarization (DNP)-enhanced high resolution solid state13C nuclear magnetic resonance (NMR) spectroscopy. The home built DNP magic-angle-spinning (MAS) NMR spectrometer operates at a field strength of 1.9 T and the highest DNP enhancement factor of synthetic diamonds came near to 103. Comparing with Ib-type natural diamonds, the13C NMR linewidths of synthetic diamonds in static spectra are broader. The13C spin-lattice relaxation time and DNP polarization time of synthetic diamond are shorter than those of Ib-type natural diamond. From the hyperfine structure of the DNP enhancement curve, four kinds of nitrogen-centred free radicals could be identified in synthetic diamond.  相似文献   

2.
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth’s field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth’s magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring 14N nucleus via the hyperfine interaction. A high-quality 2D 19F–1H COSY spectrum acquired in the Earth’s magnetic field with DNP enhancement is presented and compared to simulation.  相似文献   

3.
In this study,1H and13C dynamic nuclear polarization (DNP) was generated at a magnetic field strength of 0.33 T utilizing silica phase immobilized nitroxide (SPIN) samples. The polarization was subsequently transferred to flowing liquids and monitored at a magnetic field strength of 4.7 T. These solid/liquid intermolecular transfer (SLIT) experiments provide efficient polarization transfer without the necessity of the free radical system present in the monitoring fluid. Specifically, ultimate1H SLIT DNP Overhauser enhancements of ?56 and ?110 have been observed for benzene and chloroform in the presence of SPIN system 2, respectively. The13C SLIT DNP enhancement for benzene is dominated by three-spin effects and poor leakage factors (f c). However, a particularly favorable case is the chloroform/SPIN 2 system which exhibits a scalar dominated enhancement. For this case, positive enhancements 40–60 times the13C thermal Boltzmann magnetization at 4.7 T have been observed. The large scalar dominated13C DNP enhancement for this system represents one of the largest experimental enhancements reported to date. The13C DNP spectra for other samples which exhibit favorable scalar13C dominated enhancements (e.g., Freon 113) are also presented. Three different SPIN systems were also prepared and characterized in the present study.  相似文献   

4.
In a preliminary report, we have demonstrated transfer of a flowing bolus enhanced in low magnetic fields (e.g., 0.33 T) with dynamic nuclear polarization (DNP), but monitored in a high magnetic field (4.7 T). The advantages of the high magnetic field monitoring approach include: 1) greater chemical shift dispersion, and 2) improved signal strength in comparison with static low field DNP experiments. In the present study, a model is developed to predict ultimate DNP enhancements (A) in this experiment for flow liquid/liquid intermolecular transfer (L2IT). L2IT1H and13C data is obtained for benzene and chloroform in order to test the validity of the model. The ultimate1H and13C DNP enhancements obtained for benzene/TEMPO are ?150 and ?220, respectively. For a chloroform/TEMPO (L2IT) sample, the ultimate enhancements are close to the1H dipolar (?330) and the13C scalar (+2660) limit, respectively. In the latter case, the observed13C DNP enhancement exceeds the thermal Boltzmann magnetization at 4.7 T by a factor of 21. For a 1-chlorobutane/TEMPO sample selective enhancements were observed at different sites in the molecule. For example, the C-1 carbon exhibits a large scalar enhancement, whereas, the other carbons exhibit dipolar enhancements. Data illustrating the importance of three-spin effects in13C DNP studies is also presented. Alternative methods of sample transfer from the low to high magnetic field are also discussed.  相似文献   

5.
Three chemical vapor deposited diamond films were studied by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state13C nuclear magnetic resonance (NMR) spectroscopy. Enhanced13C direct-polarization spectra of diamond films were obtained by irradiating the samples with microwaves at or near electron spin resonance Larmor frequency of carbon center free radicals. No NMR signal for sp2 hybridized carbons could be observed. From the curve of the DNP enhancement as a function of frequency, it is found that the dominant DNP mechanism is the solid-state effect. The13C cross-polarization spectrum, which is an evidence for existence of the proton defect in the lattice of diamond films, is much broader than the13C single pulse spectrum. The reason is discussed shortly.  相似文献   

6.
The heterogeneous1H dynamic nuclear polarization (DNP) effect is studied at low magnetic fields for a system consisting of several newly synthesized carbon chars suspended in water. By using Fourier Transform pulsed-field-gradient spin–echo NMR spectroscopy, several different self-diffusion coefficients have been observed in aqueous char suspensions, corresponding to regions of differing water mobility in the porous structure. Proton spin–lattice relaxation data generally confirm the results of molecular diffusion measurements. Through utilization of the Torrey model, the influence of “cage effects” on DNP enhancement in porous media is discussed. Results suggest that short-range nuclear–electronic interactions in pores have a dominant effect on DNP enhancement in char suspensions.  相似文献   

7.
T. R. Eykyn  M. O. Leach 《Molecular physics》2013,111(13-14):1827-1832
Polarization transfer has become a commonplace technique for the enhancement of a variety of nuclei in high field nuclear magnetic resonance (NMR). In this paper the homonuclear Hartmann-Hahn method for polarization transfer is revisited and it is shown that a 90% transfer of polarization can be achieved experimentally between a pair of scalar coupled 13C nuclei in a sample of isotopically enriched glycine. This may show particular utility in the field of dynamic nuclear polarization (DNP) and could be used as an addendum to already established DNP techniques allowing the favourable enhancement to be ‘stored’ on long-lived nuclei and subsequently transferred to shorter-lived nuclei prior to observation.  相似文献   

8.
Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of ?110 (14N TEMPOL) and ?165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about ?110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.  相似文献   

9.
The successful synthesis and solid state NMR characterization of silica-based organic–inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the 13C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by 15N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the 15N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance 15N nuclei, rendering expensive labeling of peptides unnecessary.  相似文献   

10.
Hyperpolarization techniques, in particular dissolution dynamic nuclear polarization (D-DNP), make a contribution to overcoming sensitivity limitations of magnetic resonance (MR) spectroscopy through signal enhancement, leading to the study of new fields of research in real time. Utilizing the large signal enhancement initially produced on small molecules, it has become possible to study systems with low γ nuclei, such as 13C, 15N, and 29Si. This review summarizes recent studies that have extended the applicability of D-DNP into various areas of research, especially for systems in nonequilibrium conditions that involve in vivo metabolic/molecular MR imaging for early stage disease diagnosis and real-time MR analysis of various chemical/biochemical reactions for kinetic and mechanistic studies. This review also deals with the theoretical aspects of DNP mechanisms and experimental arrangements of the dissolution setup.  相似文献   

11.
A liquid state shuttle dynamic nuclear polarization (DNP) spectrometer is presented, featuring several technical modifications that increase stability and improve reproducibility. For the protons of l-tryptophan, the signal enhancement and the DNP spin properties, such as relaxation, were measured and compared with each other. The calculated coupling factors suggest that the proton accessibility for the polarizer molecule has an important influence on the DNP enhancement. In general, short proton spin longitudinal relaxation times without radical reduce the detectable enhancement by decreasing the leakage factor and increasing the relaxation losses during the course of the sample transfer. The usage of a global enhancement factor gives a more complete overview of the capabilities for the described experimental setup. Global enhancements of up to ?4.2 for l-tryptophan protons are found compared to pure Boltzmann enhancements of up to ?2.4.  相似文献   

12.
The nitroxide-based 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical is widely used in 13C dynamic nuclear polarization (DNP) due to its relatively low cost, commercial availability, and effectiveness as polarizing agent. While a large number of TEMPO derivatives are available commercially, so far, only few have been tested for use in 13C DNP. In this study, we have tested and evaluated the 13C hyperpolarization efficiency of eight derivatives of TEMPO free radical with different side arms in the 4-position. In general, these TEMPO derivatives were found to have slight variations in efficiency as polarizing agents for DNP of 3 M [1-13C] acetate in 1:1 v/v ethanol:water at 3.35 T and 1.2 K. X-band electron paramagnetic resonance (EPR) spectroscopy revealed no significant differences in the spectral features among these TEMPO derivatives. 2H enrichment of the ethanol:water glassing matrix resulted in further improvement of the solid-state 13C DNP signals by factor of 2 to 2.5-fold with respect to the 13C DNP signal of non-deuterated DNP samples. These results suggest an interaction between the nuclear Zeeman reservoirs and the electron dipolar system via the thermal mixing mechanism.  相似文献   

13.
We have performed liquid state (“Overhauser”) dynamic nuclear polarization (DNP) experiments at high magnetic field (9.2?T, corresponding to 260?GHz EPR and 400?MHz 1H-NMR resonance frequency) on solutions of pyruvate, lactate and alanine in water with TEMPOL nitroxide radicals as polarizing agent. We present experimental results showing DNP enhancement on metabolite methyl protons, varying for the different target metabolites. It is shown that the enhancements are achieved through direct coupling between the radicals and the target metabolites in solution, i.e., the effect is not mediated by the solvent water protons. The coupling factors between the TEMPOL radicals and the metabolites observed are a factor of 3–5 smaller compared to direct polarization transfer from TEMPOL to water protons.  相似文献   

14.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ∼17 have been obtained in two-dimensional 13C–13C chemical shift correlation spectra of the amino acid U–13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

15.
The efficiency of Overhauser dynamic nuclear polarization (DNP) depends on the local dynamics modulating the dipolar coupling between the two interacting spins. By attaching nitroxide based spin labels to molecules and by measuring the 1H DNP response of solvent water, information about the local hydration dynamics near the spin label can be obtained. However, there are two commonly used types of nitroxide ring structures; a pyrroline based and a piperidine based molecule. It is important to know when comparing different experiments, whether changes in DNP enhancements are due to changes in local hydration dynamics or because of the different spin label structures. In this study we investigate the key parameters affecting DNP signal enhancements for 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl, a 5-membered ring nitroxide radical, and for 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy, a 6-membered ring nitroxide radical. Using X-Band DNP, field cycling relaxometry, and molecular dynamics simulations, we conclude that the key parameters affecting the DNP amplitude of the 1H signal of water to be equal when using either nitroxide. Thus, experiments measuring hydration dynamics using either type of spin labels may be compared.  相似文献   

16.
Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging – provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on 13C nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum 1H signals by about 600, which is significantly less than in optimized low-γ liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 106. Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based 1H NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments.  相似文献   

17.
The yttrium complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(1′-13C-acetic acid) [13C]DOTA was synthesized. Fast dissolution dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) studies revealed that the 89Y, 13C, and 15N nuclei present in the complex could be co-polarized at the same optimum microwave irradiation frequency. The liquid-state spin–lattice relaxation time T 1 of these nuclei were found to be reasonably long to preserve some or most of the DNP-enhanced polarization after dissolution. The hyperpolarized 13C and 89Y NMR signals were optimized in different glassing mixtures. The overall results are discussed in light of the thermal mixing model of DNP.  相似文献   

18.
Cross polarization can provide significant enhancements with respect to direct polarization of low-γ nuclei such as 13C. Substantial gains in sample throughput (shorter polarization times) can be achieved by exploiting shorter build-up times τDNP(1H)?<?τDNP(13C). To polarize protons rather than low-γ nuclei, nitroxide radicals with broad ESR resonances such as TEMPO are more appropriate than Trityl and similar carbon-based radicals that have narrow lines. With TEMPO as polarizing agent, the main Dynamic Nuclear Polarization (DNP) mechanism is thermal mixing (TM). Cross polarization makes it possible to attain higher polarization levels at 2.2?K than one can obtain with direct DNP of low-γ nuclei with TEMPO at 1.2?K, thus avoiding complex cryogenic technology.  相似文献   

19.
Dynamic nuclear polarization (DNP) transfers electron spin-polarization to nuclear spins in close proximity, increasing sensitivity by two-to-three orders of magnitude. This enables nuclear magnetic resonance (NMR) experiments on samples with low concentrations of analyte. The requirement of using cryogenic temperatures in DNP-enhanced solid-state NMR (ssNMR) experiments may impair the resolution and hence limit its broad application to biological systems. In this work, we introduce a “High-Temperature DNP” approach, which aims at increasing spectral resolution by performing experiments at temperatures of around 180?K instead of?~100?K. By utilizing the extraordinary enhancements obtained on deuterated proteins, still sufficiently large DNP enhancements of 11–18 are obtained for proton and carbon, respectively. We recorded high sensitivity 2D 13C–13C spectra in?~9?min with higher resolution than at 100?K, which has similar resolution to the one obtained at room temperature for some favorable residues.  相似文献   

20.
The applicability of surface‐enhanced Raman spectroscopy is demonstrated to probe the adsorption behavior of individual molecules on a Ag electrode. High‐quality SERS spectra of (R)‐di‐2‐naphthylprolinol (DNP) were obtained from ultradilute solutions (10−12 M ) on the Ag‐nanoparticle‐modified Ag electrode, which is attributed to the high electromagnetic (EM) effect of the SERS‐active system as well as to the strong adsorption and interaction of DNP molecules with Ag. The stable SERS spectra present remarkable potential dependence, which gives evidence for the behavior of individual DNP molecules on the Ag surface. Based on statistical analysis for the probability of DNP molecules located in ‘hot spots’, we propose an SERS mechanism for individual molecules in the electrode system, in combination with the hot‐spot model and orientation of the probe molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号