首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon–nucleon and hyperon–hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Nonmesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.  相似文献   

2.
For a given equation of state of neutron matter in the relativistic σ-ω model, ๏๏๏๏๏ including the vacuum fluctuation of neutron and σ meson, the properties of pure neutron star are studied. We find that the maximum mass of pure neutron star is ~ 2.0 M_{\odot}. At the same time, the influence of incompressibility of the nuclear matter to the properties of neutron star is also studied. We also find that the maximum mass of neutron stars decreases as equation of state of neutron matter becomes softer.  相似文献   

3.
The nuclear symmetry energy is intimately connected with nuclear astrophysics. This contribution focuses on the estimation of the symmetry energy from experiment and how it is related to the structure of neutron stars. The most important connection is between the radii of neutron stars and the pressure of neutron star matter in the vicinity of the nuclear saturation density ns. This pressure is essentially controlled by the nuclear symmetry energy parameters Sv and L , the first two coefficients of a Taylor expansion of the symmetry energy around ns. We discuss constraints on these parameters that can be found from nuclear experiments. We demonstrate that these constraints are largely model-independent by deriving them qualitatively from a simple nuclear model. We also summarize how recent theoretical studies of pure neutron matter can reinforce these constraints. To date, several different astrophysical measurements of neutron star radii have been attempted. Attention is focused on photospheric radius expansion bursts and on thermal emissions from quiescent low-mass X-ray binaries. While none of these observations can, at the present time, determine individual neutron star radii to better than 20% accuracy, the body of observations can be used with Bayesian techniques to effectively constrain them to higher precision. These techniques invert the structure equations and obtain estimates of the pressure-density relation of neutron star matter, not only near ns, but up to the highest densities found in neutron star interiors. The estimates we derive for neutron star radii are in concordance with predictions from nuclear experiment and theory.  相似文献   

4.
The properties of infinite nuclear matter and neutron star are studied theoretically in relativistic mean-field (RMF) approach with three typical parameter sets NL1, NL-SH and TM1. It is found that all these new RMF parameter sets can very satisfactorily reproduce the properties of high density matter. Among these parameter sets, TM1, with a nonlinear ω term, reproduces a slightly smaller energy, piessure and neutron star mass than NL-SH and NL1. The ρ meson field has a large influence on the properties of neutron star and infinite nuclear matter. A detailed discussion for the significance of numerical results is also given.  相似文献   

5.
Vacuum renormalization corrections are calculated for normal nuclear matter and neutron star matter in the chiral-sigma model. The theory is generalized to include hyperons in equilibrium with nucleons and leptons. The equations of state corresponding to two compression moduli, a “stiff” and “soft” one for nuclear matter, are studied. It is shown that fully one half the mass of a neutron star at the limiting mass is composed of matter at less than twice nuclear density. Neutron star masses are therefore moderately sensitive to the properties of matter near saturation and to the domain of the hyperons, but dominated by neither. The predictions for the two equations of state are compared with observed neutron star masses, and only the stiffer is compatible.  相似文献   

6.
We investigate the ^3PF2 neutron superfluidity in H-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the threebody force effect on the ^3PF2 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the ^3PF2 neutron superfluidity in neutron star matter and neutron stars.  相似文献   

7.
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass ms and the color superconducting gap Δ. Increasing B and ms or decreasing Δ can stiffen the EOS which results in the larger maximum masses of neutron stars.  相似文献   

8.
The Walecka model is extended to the neutron star matter, and in it's mean field approximation, the properties of neutron star matter consisted of proton, neutron and electron in uniform strong magnetic fields are studied. it is found that the ~equation of state (eos) becomes stiffer in some degree, and the ratio of neutron increase evidently while the one of proton and electron decrease with the magnetic field being stronger. the influence of the magnetic to the eos is smaller than the one to the fractions of the particles. the pressure of the neutron star matter is calculated by hydrodynamics and thermodynamics respectively. the stronger the magnetic field is, the more adjacent the curves of pressure depicted in these two ways are, and they are in superposition completely when the magnetic field is 1014T.  相似文献   

9.
Density-dependent parametrization models of the nucleon-meson coupfing constants, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state (EOS) and the neutron star properties are studied in a relativistic Lagrangian density, using the relativistic mean field (RMF) hadron theory. It is known that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influences the stability of the neutron stars. We use density-dependent models of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the (~-field effects in asymmetric nuclear matter. Our calculation shows that the stability conditions of the neutron star matter can be improved in presence of the δ-meson in the density-dependent models of the coupling constants. The EOS of nuclear matter strongly depends on the density dependence of the interactions.  相似文献   

10.
There are over 100 accreting neutron stars in our galaxy, in which matter (typically H/He) is tidally transferred from a secondary companion to the neutron star. Accretion of this matter perturbs the thermal structure of the interior away from that of an isolated cooling neutron star. In this paper. we review how this accretion induces reactions in the crust of the neutron star that keep the interior hot. If the accretion is intermittent, then the heated surface layers are directly observable when accretion stops. This heating also affects the unstable ignition of light elements in the neutron star envelope. Observations of the neutron star cooling following an accretion outburst can in principle constrain the thermal properties of the crust and core.  相似文献   

11.
A model-independent limit on neutron star radius as a function of mass based only on well-accepted principles is derived. We discuss our limit in connection with a recent interpretation of x-ray pulsations from SAX J1808.4-3658 as indicating a strange-star candidate, and show that this object can also be a normal neutron star, though one whose central core has very high density. The most plausible high-density phase of hadronic matter, which is also expected to be very compressible, is quark matter. So an alternative to the strange star interpretation of SAX J1808.4-3658 is that it is a hybrid neutron star.  相似文献   

12.
戴子高  陆埮 《物理学报》1994,43(2):198-204
从奇异夸克物质的热力学巨势出发计算了奇异星的组份,得到电子丰度随强相互作用耦合常数或奇异物质的密度增大而减小.利用弱电统一理论,推导了奇异物质的中微子能量损失率。通过研究有薄壳的均匀奇异星和中子垦的冷却过程,得到年轻奇异星的表面温度比同年代的中子星的表面温度低得多,这可以作为区别奇异星与中子星的观测途径。 关键词:  相似文献   

13.
The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. [1] that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of non-radial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars.  相似文献   

14.
We investigate the properties of the neutron star with relativistic mean-field models. We incorporate in the quantum hadrodynamics and in the quark-meson coupling models a possible reduction of meson masses in nuclear matter. The equation of state for neutron star matter is obtained and is employed in Oppenheimer-Volkov equation to extract the maximum mass of the stable neutron star. We find that the equation of state, the composition and the properties of the neutron stars are sensitive to the values of the meson masses in medium.  相似文献   

15.
The relativistic mean field(RMF) FSUGold model extended to include hyperons is employed to study the properties of neutron stars with strong magnetic fields.The chaotic magnetic field approximation is utilized.The effect of anomalous magnetic moments(AMMs) is also investigated.It is shown that the equation of state(EOS)of neutron star matter is stiffened by the presence of the magnetic field,which increases the maximum mass of a neutron star by around 6%.The AMMs only have a small influence on the EOS of neutron star matter,and increase the maximum mass of a neutron star by 0.02M_(sun).Neutral particles are spin polarized due to the presence of the AMMs.  相似文献   

16.
We have investigated the possibility of the presence of the deltas in neutron star matter and their effects on neutron stars. Δ-meson couplings of the theoretical predictions are only restricted in a region where the deltas can be present and even a first-order phase transition may take place, making the EOS sorer and the maximum mass of neutron stars smaller. The presence of the deltas leads to the rapid decrease of neutrino mean free paths.  相似文献   

17.
中子星内壳层中存在原子核、中子、电子等非均匀分布的物质。在Wigner-Seitz近似下,共存相方法和自洽Thomas-Fermi近似方法是描述这种非均匀物质的有效方法。中子在非均匀物质所占的比例远远大于其他组分,因此原子核的对称能对非均匀物质的性质会产生十分重要的影响,而原子核对称能的密度依赖关系在核物质饱和密度附近有较大的不确定性。采用相对论平均场理论描述核子间相互作用,研究原子核对称能对中子星内壳层的密度范围、pasta相结构、壳核相变密度等性质的影响,探寻其中可能存在的关联。计算结果表明,原子核对称能及其密度依赖性在决定中子星内壳层非均匀物质的性质中起着重要作用,这与之前相关研究中得到的结论基本相符。Within Wigner-Seitz approximation, both the coexisting phases method and the self-consistent Thomas-Fermi approximation can be used to describe the nonuniform matter consisting of nuclei, neutrons, and electrons, which may coexist in the inner crust of neutron star. Since the neutron fraction is very large, nuclear symmetry energy may have an important impact on the properties of nonuniform matter. However, the density dependence of nuclear symmetry energy around saturation density is still rather uncertain. This paper focuses on the influence of nuclear symmetry energy on the density range of inner crust, pasta phase structure, and crust-core transition density of neutron star, where the relativistic mean field theory is adopted to describe the nucleon-nucleon interaction. It is turned out that the nuclear symmetry energy and its density dependence play an import role in determining the properties of nonuniform matter in the inner crust of neutron star, which is consistent with the former related studies.  相似文献   

18.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

19.
利用Brueckner-Hartree-Fock方法,计算了β稳定中子星物质的状态方程以及三体核力的影响,特别是研究了三体核力对中子星物质中K介子凝聚的影响. 结果表明三体核力对β稳定中子星物质中出现K介子凝聚的临界密度以及中子星物质中各种粒子所占的比例均有重要影响. 三体核力的主要作用是降低了中子星物质中出现K介子凝聚的临界密度并使K凝聚相中的核物质更加接近于对称核物质.  相似文献   

20.
The nucleus of 208Pb, a system 18 orders of magnitude smaller and 55 orders of magnitude lighter than a neutron star, may be used as a miniature surrogate to establish important correlations between its neutron skin and several neutron-star properties. Indeed, models with a thicker neutron skin in 208Pb generate larger neutron stars that have a lower liquid-to-solid transition density. Further, we illustrate how the correlation between the neutron skin in 208Pb and the radius of a 1.4 solar-mass neutron star may be used to place important constraints on the equation of state of neutron-rich matter and how it may help elucidate the existence of a phase transition at the core of the star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号