首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Dynamic equilibrium between the folded and unfolded conformations of single stranded DNA hairpin molecules containing polythymine hairpin loops was investigated using simultaneous two-beam fluorescence cross-correlation spectroscopy and single beam autocorrelation spectroscopy. The hairpins were end-labeled with a fluorescent dye and a quencher, such that folding and unfolding of the DNA hairpin primary structure caused the dye fluorescence to fluctuate on the same characteristic time scale as the folding and unfolding reaction. These fluctuations were observed as the molecules flowed sequentially between two spatially offset, microscopic detection volumes. Cross-correlation analysis of fluorescence from the two detection volumes revealed the translational diffusion and flow properties of the hairpins, as well as the average molecular occupancy of the two volumes. Autocorrelation analysis of the fluorescence from the individual detection volumes revealed the kinetics of hairpin folding and unfolding, with the parameters relating to diffusion, flow, and molecular occupancy constrained to the values determined from the cross-correlation analysis. This allowed unambiguous characterization of the folding and unfolding kinetics, without the need to determine the hydrodynamic properties by analyzing a separate control sample. The analysis revealed nonexponential relaxation kinetics and DNA size-dependent folding times characteristic of dynamic heterogeneity in the DNA hairpin-forming mechanism.  相似文献   

2.
The conformational fluctuations of dye-quencher labeled DNA hairpin molecules in aqueous solution were investigated using dual probe beam fluorescence fluctuation spectroscopy. The measurements revealed the flow and diffusion times of the DNA molecules through two spatially offset optical probe regions, the absolute and relative concentrations of each conformational substate of the DNA, and the kinetics of the DNA hairpin folding and unfolding reactions in the 1 micros to 10 ms time range. A DNA hairpin containing a 21-nucleotide polythymine loop and a 4-base pair stem exhibited double exponential relaxation kinetics, with time constants of 84 and 393 micros. This confirms that folding and melting of the DNA hairpin structure is not a two state process but proceeds by way of metastable intermediate states. The fast time constant corresponds to formation and unfolding of an intermediate, and the slow time constant is due to formation and disruption of the fully base-paired stem. This is consistent with a previous study of a similar DNA hairpin with a 5-base pair stem, in which the fast reaction was attributed to the fluctuations of an intermediate DNA conformation [J. Am. Chem. Soc. 2006, 128, 1240-1249]. In that case, reactions involving the native conformation could not be observed directly due to the limited observation time range of the fluorescence correlation spectroscopy experiment. The intermediate states of the DNA hairpins are suggested to be due to a collapsed ensemble of folded hairpins containing various partially folded or misfolded conformations.  相似文献   

3.
We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass-surface immobilization strategies employing the biotin-streptavidin interaction and a third covalent immobilization strategy involving formation of a disulfide bond to a thiol-derivatized glass surface are described and evaluated. Results from image and time-trace data from surface-immobilized molecules are compared with those from freely diffusing molecules, which are unperturbed by surface interactions. Using a simple two-state model to analyze the open and closed time distributions for immobilized hairpins, we calculate the lifetimes of the two states. For hairpins with a loop size of 40 adenosines and a stem size of either seven or nine bases, the respective closed-state lifetimes are 45 +/- 2.4 and 103 +/- 6.0 ms, while the respective open-state lifetimes are 133 +/- 5.5 and 142 +/- 22 ms. These results show that the open state of the hairpin is favored over the closed state of the hairpin under these conditions, consistent with previous diffusion fluorescence correlation spectroscopy (FCS) experiments on poly(A)-loop hairpins. The measured open-state lifetime is about 30 times longer than the calculated 3 ms open-state lifetime for both hairpins based on a closing rate scaling factor derived from a previous FCS study for hairpins in diffusion with 12-30 thymidines in their loops. As predicted, the closed-state lifetime is dependent on the stem length and is independent of the loop characteristics. Our findings indicate that current models should consider sequence dependence in calculating ssDNA thermostability. The surface immobilization chemistries and other experimental techniques described here should prove useful for studies of single-molecule populations and dynamics.  相似文献   

4.
Based on a confocal microscopy platform, we extended the FCS time window by three orders of magnitude to the s timescale by attaching a polystyrene microsphere. We simultaneously monitored the relaxations of multiple intermediates involved in DNA hairpin folding, thus offering a much more detailed view of the kinetics of hairpin folding experimentally.  相似文献   

5.
6.
7.
We have investigated new folding pathways of human telomeric type-1 and type-2 G-quadruplex conformations via intermediate hairpin and triplex structures. The stabilization energies calculated by ab initio methods evidenced the formation of a hairpin structure with Hoogsteen GG base pairs. Further calculations revealed that the G-triplet is more stable than the hairpin conformation and equally stable when compared to the G-tetrad. This indicated the possibility of a triplex intermediate. The overall folding is facilitated by K(+) association in each step, as it decreases the electrostatic repulsion. The K(+) binding site was identified by molecular dynamics simulations. We then focused on the syn/anti arrangement and found that the anti conformation of deoxyguanosine is more stable than the syn conformation, which indicated that folding would increase the number of anti conformations. The K(+) binding to a hairpin near the second lateral TTA loop was found to be preferable, considering entropic effects. Stacking of G-tetrads with the same conformation (anti/anti or syn/syn) is more stable than mixed stacking (anti/syn and vice versa). These results suggest the formation of type-1 and type-2 G-quadruplex structures with the possibility of hairpin and triplex intermediates.  相似文献   

8.
We perform extensive lattice Monte Carlo simulations of protein folding to construct and compare the equilibrium and the kinetic transition state ensembles of a model protein that folds to the native state with two-state kinetics. The kinetic definition of the transition state is based on the folding probability analysis method, and therefore on the selection of conformations with 0.4相似文献   

9.
The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s−1, relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.  相似文献   

10.
We report molecular dynamics simulations of the equilibrium folding/unfolding thermodynamics of the RNA tetraloop in explicit solvent. A replica exchange molecular dynamics study of the r(CGUUGCCG) oligomer that forms a hairpin is performed for 226 ns per replica, using 52 replicas. We are able to show the unbiased folding of all replicas starting from extended conformations. The equilibrium pressure-temperature free energy of folding, DeltaG(P,T), is calculated from the averaged energy, pressure, and specific volume change upon folding of the oligomer as a function of T at constant volume. We find that this oligomer is destabilized by increasing hydrostatic pressure, similar to the behavior of globular proteins.  相似文献   

11.
12.
The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA-DNA and DNA-DNA duplexes can be formed with these target hairpins, even when the melting temperatures for the resulting duplexes are up to 50 degrees C lower than that of the hairpin target. Both hairpin/single-stranded and hairpin/hairpin interactions are considered in the scope of these studies. Secondary structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic obstacles to hybridization imposed by both target and probe secondary structure are significant concerns for the continued development of antisense agents and especially diagnostic probes.  相似文献   

13.
[reaction: see text] The vinylcyclopropyl moiety was used as an efficient probe to test mechanistic possibilities of the triazolinedione-alkene ene reaction. In non-hydroxylic solvents, this reaction afforded only the ene adducts via a closed three-membered aziridinium imide (AI) intermediate, whereas in hydroxylic solvents a dipolar intermediate is favored and trapped by the cyclopropyl moiety to form the corresponding cyclopropyl-rearranged solvent-trapped adducts.  相似文献   

14.
RNA folding is enabled by interactions between the nucleic acid and its ion atmosphere, the mobile sheath of aqueous ions that surrounds and stabilizes it. Understanding the ion atmosphere requires the interplay of experiment and theory. However, even an apparently simple experiment to probe the ion atmosphere, measuring the dependence of DNA duplex stability upon ion concentration and identity, suffers from substantial complexity, because the unfolded ensemble contains many conformational states that are difficult to treat accurately with theory. To minimize this limitation, we measured the unfolding equilibrium of a DNA hairpin using a single-molecule optical trapping assay, in which the unfolded state is constrained to a limited set of elongated conformations. The unfolding free energy increased linearly with the logarithm of monovalent cation concentration for several cations, such that smaller cations tended to favor the folded state. Mg(2+) stabilized the hairpin much more effectively at low concentrations than did any of the monovalent cations. Poisson-Boltzmann theory captured trends in hairpin stability measured for the monovalent cation titrations with reasonable accuracy, but failed to do so for the Mg(2+) titrations. This finding is consistent with previous work, suggesting that Poisson-Boltzmann and other mean-field theories fail for higher valency cations where ion-ion correlation effects may become significant. The high-resolution data herein, because of the straightforward nature of both the folded and the unfolded states, should serve as benchmarks for the development of more accurate electrostatic theories that will be needed for a more quantitative and predictive understanding of nucleic acid folding.  相似文献   

15.
We report stopped-flow kinetics experiments to study the folding and unfolding of 5 base-pair stem and 21 nucleotide polythymidine loop DNA hairpins over various concentrations of NaCl. The reactions occurred on a time scale of milliseconds, considerably longer than the microsecond time scale suggested by previous kinetics studies of similar-sized hairpins. In comparison to a recent fluorescence correlation spectroscopy study (J. Am. Chem. Soc. 2006, 128, 1240-1249), we suggest the microsecond time-scale reactions are due to intermediate states and the millisecond time-scale reactions reported here are due to the formation of the fully folded DNA hairpin. These results support our view that DNA hairpin folding occurs via a minimum three-state mechanism.  相似文献   

16.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

17.
周超  杨京法  赵江 《高分子学报》2021,52(3):321-334
荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果.该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力.本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.  相似文献   

18.
The conformations of three cholate foldamers and one molecular basket were studied by fluorescence and NMR spectroscopy. In nonpolar solvents (e.g., hexane/ethyl acetate or ethyl acetate) mixed with a small amount of a polar solvent (e.g., alcohol or DMSO), the cholate oligomer folded into a helix with the hydrophilic faces of the cholates turned inward. Folding created a hydrophilic nanocavity preferentially solvated by the entrapped polar solvent concentrated from the bulk. This microphase separation of the polar solvent was critical to the folding process. Folding was favored by larger-sized polar solvent molecules, as fewer such molecules could occupy and solvate the nanocavity, thus requiring a smaller extent of phase separation during folding. Folding was also favored by smaller/acyclic nonpolar solvent molecules, probably because they could avoid contact with the OH/NH groups within the nanocavity better than larger/cyclic nonpolar solvent molecules.  相似文献   

19.
王承克  王晴晴  陈丹 《化学通报》2017,80(5):420-427
由于链内碱基互补配对作用形成的"发夹"结构DNA分子被广泛用于生物分子传感分析。双链或多链"发夹"结构DNA分子参与的杂交链式反应信号记录方式多样,主要有荧光法、比色法、电化学方法等。基于杂交链式反应的检测方法具有快速、方便、成本低、准确度高、灵敏度高、特异性强的优点,在分析传感研究中的应用尤其受到人们的关注,近些年发展迅速。本文综述了"发夹"结构DNA与杂交链式反应应用于生物传感分析的原理、信号记录方式及其在蛋白质、重金属离子、小分子、疾病标志物、DNA等检测中的研究进展。  相似文献   

20.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号