首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and dynamically changing patterns can also exist in reaction-diffusion systems: the Belousov-Zhabotinsky reaction provides a classical example for these phenomena. Until now, no experimental evidence had been found for the presence of such dynamical patterns in precipitation systems. Pattern formation phenomena, as a result of precipitation front coupling with traveling waves, are investigated in a new simple reaction-diffusion system that is based on the precipitation and complex formation of aluminum hydroxide. A unique kind of self-organization, the spontaneous appearance of traveling waves, and spiral formation inside a precipitation front is reported. The newly designed system is a simple one (we need just two inorganic reactants, and the experimental setup is simple), in which dynamically changing pattern formation can be observed. This work could show a new perspective in precipitation pattern formation and geochemical self-organization.  相似文献   

2.
A new simple reaction-diffusion system is presented focusing on pattern formation phenomena as consecutive precipitation fronts and distortion of the precipitation front. The chemical system investigated here is based on the amphoteric property of aluminum hydroxide and exhibits two unique phenomena. Both the existence of consecutive precipitation fronts and distortion are reported for the first time. The precipitation patterns could be controlled by the pH field, and the distortion of the precipitation front can be practical for microtechnological applications of reaction-diffusion systems.  相似文献   

3.
The mechanism of pattern formation in reaction-diffusion systems is treated as an interesting subject, generally for understanding self-organization observed in living systems and natural phenomena. Several spatial patterns appear in the reaction-diffusion systems where an activator and an inhibitor coexist as an intermediate, as represented by a traveling wave, a stationary wave called a Turing structure, etc. Here, we show new kinds of waves in reaction-diffusion systems, which exhibit reciprocating motion without colliding into each other or blinking periodically. These patterns have never been observed in the conventional numerical models, although experimentally oscillating spots have been often observed. Our model demonstrates that other than the ratio of diffusion coefficients for both intermediates, the thickness of reaction media acts to generate inhibitory effect. The spatial factor of the medium contributes to new pattern formation in reaction-diffusion systems. For the design of new functional materials, the concept might be useful as a simple controlling method for pattern dynamics.  相似文献   

4.
The direct simulation Monte Carlo method is used to reproduce Turing patterns at the microscopic level in reaction-diffusion systems. In order to satisfy the basic condition for the development of such a spatial structure, we propose a model involving a solvent, which allows for disparate diffusivities of individual reactive species. One-dimensional structures are simulated in systems of various lengths. Simulation results agree with the macroscopic predictions obtained by integration of the reaction-diffusion equations. Additional effects due to internal fluctuations are observed, such as temporal transitions between structures of different wavelengths in a confined system. For a structure developing behind a propagating wave front, the fluctuations suppress the induction period and accelerate the formation of the Turing pattern. These results support the ability of reaction-diffusion models to robustly reproduce axial segmentation including the formation of early vertebrae or somites in noisy biological environments.  相似文献   

5.
Nonlinear spatial temporal behavior of the iodate/thiosulfate/sulfite reaction is investigated both in a stirred and spatially extended media. In accord with the temporal dynamics in the homogeneous media, both propagating fronts and target patterns are achieved in the spatially extended medium. On increasing the iodate concentration the system evolves from exhibiting propagating fronts to circular waves and then shows target patterns and finally the iodine waves. Influences of concentrations of sulfite, thiosulfate and acid on the reaction kinetics and pattern formation are also investigated systematically, and transitions from pH waves to iodine waves can be achieved via adjusting the concentration of the three species. The propagation velocities of pH and iodine waves are understood with the quadratic and cubic autocatalysis of proton and iodide respectively.  相似文献   

6.
The application of a modified iodine‐azide procedure for the detection of proline, arginine, and lysine is described. Phenyl isothiocyanate was used to transform amino acids into phenyl thiocarbamyl derivatives (derivatization in situ). The developed plates were sprayed with a mixture of sodium azide and starch solution, adjusted to pH 5.5, and exposed to iodine vapour. Due to the catalytic effect of the C? S bond, the spots appeared white on a violet‐grey background and were stable for 20 minutes. The detection limits were found to lie in the pmole range. The iodine‐azide test is compared with other procedures (iodine, UV, ninhydrin).  相似文献   

7.
The iodine-azide reaction was employed to TLC detection of sulphur-containing derivatives of protein and some non-protein amino acids. The derivatization reaction with phenyl isothiocyanate (PITC) took place directly on the plate before the developing step. Subsequently, the plates were sprayed with a mixture of sodium azide and starch solution in NP-TLC and in the case of RP-TLC sodium azide solution with starch incorporated into mobile phase and then exposed to iodine vapour. The spots became visible as white spots on violet-grey background. The obtained detection limits of PTC-derivatives have been compared with other visualizing techniques commonly used in TLC practice (UV254 and iodine vapour). The iodine-azide system has been proved to be the most favourable and enabled to detect quantities per spot in the range of 1-60 pmol (HPTLC) and 3-100 pmol (TLC).  相似文献   

8.
The swelling kinetics of sodium polyacrylate gels has been studied in media with different pH values. The pH dependence of the degree of equilibrium swelling shows a maximum at pH 6. The degree of swelling decreases with an increase in the crosslink density, and this dependence follows an S-shaped pattern for all examined gels. When a gel swollen in media with pH 3–13 is dried in air, its contraction is reversible, while in the case of the gel swollen in acidic media at pH < 3, the process is irreversible owing to the replacement of sodium ions with protons.  相似文献   

9.
Many pattern developments in nature are believed to result from the interplay between self-activated (bio)chemical processes and the diffusive transport of constituents. Though the details are difficult to work out, the relevance of reaction-diffusion processes is widely accepted in many aspects of biological development. Due to their easier manipulation and control, aqueous phase chemical reactions are commonly preferred to probe the patterning capacity of reaction-diffusion processes. Nonetheless, sustained patterns of such a type were observed only in reactions involving oxyhalogen compounds. We report on halogen free solution chemistry systems which lead to stationary or oscillatory spatiotemporal pH patterns. They are based on the acid autocatalytic oxidation of sulfite ions by hydrogen peroxide in combination with two significantly different proton consuming feedback reactions. Besides the chemical novelty, yet experimentally and even theoretically undocumented pattern dynamics are uncovered. This success, based on a well-defined method, further paves the way to the discovery of stationary patterns in delicate biochemical reactions.  相似文献   

10.
The effects of the amounts of starch, sodium acrylate (NaAA) and dicumyl peroxide (DCP) on the properties of chloroprene rubber (CR)/starch/NaAA composites prepared by melting method were investigated. The results showed that the addition of starch improved the mechanical properties, but decreased the water‐absorbing capacity of the composite, most likely due to the decrease in the local concentration of the main water‐absorbing material sodium polyacrylate and the increase in crosslinking density of the composite resulting from the reaction between starch and CR. This reaction was verified by the vulcanized curves, DSC curves, and the cut surface morphology. The as‐prepared composite demonstrated higher water‐absorbing capacity, resulting from the incorporation of NaAA. The mechanical properties decreased with increasing the DCP loading, and the water‐absorbing ratio is the maximum at 1.0 phr DCP. The tensile strength of the composite decreased significantly after water immersion, due to the absorbed water acting as a plasticizer. The extracted component from composites after water immersion is mainly sodium polyacrylate according to Fourier transform infrared (FT‐IR) spectroscopy analysis. The morphology of the composites before and after water immersion was observed by optical transmission microscopy (OTM). The results indicated that the starch exhibits a good dispersion state, and the water‐absorbing capacity results primarily from sodium polyacrylate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We have studied the lateral stability of planar reaction-diffusion fronts in an autocatalytic reaction between aqueous ions in an externally imposed electric field. In our experiments, migration drives the pattern formation leading to cellular structures where the sufficiently greater migrational flux of the reactant with respect to that of the autocatalyst is the driving force. The difference in electric field strength between the two sides of the thin reaction front results from the significant increase in conductivity during the reaction. The results of the theoretical analysis based on the empirical rate-law model of the reaction reproduce the behavior observed experimentally.  相似文献   

12.
Grauel P  Varela H  Krischer K 《Faraday discussions》2001,(120):165-78; discussion 197-213
Pattern formation during the oscillatory oxidation of H2 on Pt ring-electrodes in the presence of electrosorbing ions was studied under potentiostatic control for three different positions of the reference electrode (RE). The position of the RE crucially affects the degree of the global feedback which is imposed by the potentiostatic operation mode, and the three configurations selected corresponded to zero, maximum and intermediate global coupling. In the absence of global coupling, 'communication' among different positions occurs exclusively through migration coupling (the electrochemical counterpart to diffusion in reaction-diffusion systems). In this case, spatially inhomogeneous oscillations that were attributed to a spatial bifurcation of the homogeneous limit cycle were observed throughout. This implies that the system is Benjamin-Feir unstable. For the strongest global coupling adjustable, travelling pulses were found that emerged in a wave bifurcation with n = 1 from the homogeneous steady state. The pulses exhibited modulations in velocity and width that most likely resulted from the interaction between inhomogeneities of the catalytic surface and the nonlinear reaction dynamics. In the case of an intermediate global coupling strength, a diversity of spatio-temporal motions was observed. The dynamics ranged from pulses over target patterns and so-called asymmetric target patterns to mixed states where two or three of these states alternate. For some parameters these mixed states were in addition separated by bursts of the system to a nearly homogeneous unreactive state.  相似文献   

13.
14.
We investigate the possibility of Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. Turing systems can lead to a variety of complex spatial patterns evolving with time. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. We present simulation data showing the possibility of such pattern formation. On the other hand, existing experimental data suggest that in situ tribofilms can form at the frictional interface due to a variety of friction-induced chemical reactions (oxidation, the selective transfer of Cu ions, etc.). These tribofilms as well as other frictional "secondary structures" can form various patterns (islands or honeycomb domains). This mechanism of pattern formation can be attributed to the Turing systems.  相似文献   

15.
The morphogenesis of calcium oxalate hydrates in aqueous solutions was investigated by varying the pH, oxalate concentration, and the concentration of the sodium salt of polyacrylate (PAA). With increasing amounts of PAA in solution, the shape of tetragonal calcium oxalate dihydrate (COD) changes from bipyramidal through elongated bipyramidal prisms to dumbbells and finally reverts to rodlike tetragonal bipyramidal prisms. PAA is incorporated into the prismatic zones of the growing COD crystals, thereby reducing the growth rate of the {100} faces along the <100> direction. Dumbbells start to develop through "non-crystallographic" branching from the prism faces and the formation of "multiple head" crystals. Adsorption of PAA on the rough surfaces of the splitting individuals supports the selection of new subindividuals and leads to the formation of core-shell patterns. The various shapes and structures of the biomimetic COD/PAA crystals and aggregates are closely related to the well-known "pathologic" individuals observed in the urine of patients with urinary disease (including urinary stones).  相似文献   

16.
This study summarises the rheological behaviour of emulsion bitumen drops in the presence of aqueous solutions of de-ionised or process water (DIW or PW) containing montmorillonite clays (M) and/or calcium ions (Ca++). The presence of calcium ions and montmorillonite clays resulted in the plastic behaviour of bitumen drops. In a DIW+M+Ca++ system, increasing temperature and calcium ion concentration resulted in an increase in the number and degree of plastic bitumen drops. In the presence of considerable amounts of Ca++ ions and/or at higher experimental temperature, bitumen drops in a PW+M system exhibited no significant overall plasticity of their surfaces. Both calcium and sodium ions contained in process water compete with each other to occupy the montmorillonite clay surface. At the pH value of process water (pH congruent with8), increasing the temperature did not change the value of bitumen droplet zeta potential. Stability of bitumen-in-water emulsions at 22 degrees C showed that bitumen droplets coalesced upon contact in the DIW+M system. The addition of calcium ions (Ca++) led to the inhibition of coagulation and coalescence of bitumen droplets, which may indicate the formation of CaM aggregates at the bitumen-water interface.  相似文献   

17.
A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates.  相似文献   

18.
A new sodium chlorite–iodine–methyl acetoacetate chemical oscillatory reaction was studied using UV–vis spectrophotometric method. The initial concentrations of methyl acetoacetate, sodium chlorite, iodine, sulfuric acid, and the pH value have great influence on the oscillation observed at wavelength of 585 nm. There is a pre-oscillatory or induction period; the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the I3 ?–starch complex reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. The time of induction period decreases with the initial concentration of methyl acetoacetate or sulfuric acid, and increases with the initial concentration of sodium chlorite. A good linear relationship exists. Oscillatory reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 114.28 and 64.92 kJ/mol, respectively. It may indicate that the two stages have different reaction mechanisms. The reaction of producing enol isomer by keto-enol tautomerism is an important step to constrain the time of induction period.  相似文献   

19.
Adsorption on ZnO of sodium poly(acrylate) (PAA), sodium poly(styrene sulfonate) (PSS) and a monomer surfactant [hydroxyethylidene diphosphonate (HEDP)] was investigated in suspensions initially equilibrated at pH 7. Results demonstrate interplay in the adsorption mechanism between zinc complexation, salt precipitation, and ZnO dissolution. In the case of PAA, the adsorption isotherm exhibits a maximum attributed to the precipitation of zinc polyacrylate. PSS and HEDP formed high-affinity adsorption isotherms, but the plateau adsorption of HEDP was significantly lower than that of PSS. The adsorption isotherm of each additive is divided into two areas. At low additive concentration (high zinc/additive ratio), the total zinc concentration in the solution decreased and the pH increased upon addition. At a higher additive ratio, zinc concentration and pH increased with the organic concentration. The increase in pH is due to the displacement of hydroxyl ions from the surface and the increase in zinc concentration results from the dissolution of ZnO due to the complexation of zinc ions by the organics. The stability of the ZnO dispersions was investigated by measurement of the particle size distribution after addition of various amounts of polymers. The three additives stabilized the ZnO dispersions efficiently once full surface coverage was reached.  相似文献   

20.
An effective medium theory is employed to derive a simple qualitative model of a pattern forming chemical reaction in a microemulsion. This spatially heterogeneous system is composed of water nanodroplets randomly distributed in oil. While some steps of the reaction are performed only inside the droplets, the transport through the extended medium occurs by diffusion of intermediate chemical reactants as well as by collisions of the droplets. We start to model the system with heterogeneous reaction-diffusion equations and then derive an equivalent effective spatially homogeneous reaction-diffusion model by using earlier results on homogenization in heterogeneous reaction-diffusion systems [S.Alonso, M.Ba?r, and R.Kapral, J. Chem. Phys. 134, 214102 (2009)]. We study the linear stability of the spatially homogeneous state in the resulting effective model and obtain a phase diagram of pattern formation, that is qualitatively similar to earlier experimental results for the Belousov-Zhabotinsky reaction in an aerosol OT (AOT)-water-in-oil microemulsion [V.K.Vanag and I.R.Epstein, Phys. Rev. Lett. 87, 228301 (2001)]. Moreover, we reproduce many patterns that have been observed in experiments with the Belousov-Zhabotinsky reaction in an AOT oil-in-water microemulsion by direct numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号