首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钱治文  商德江  孙启航  何元安  翟京生 《物理学报》2019,68(2):24301-024301
利用多物理场耦合有限元法对结构和流体适应性强、抛物方程声场计算高效准确的特点,提出了三维浅海波导下弹性结构声振特性研究的有限元-抛物方程法.该方法采用多物理场耦合有限元理论建立浅海下结构近场声辐射模型,计算局域波导下结构声振信息,并提取深度方向上复声压值作为抛物方程初始值;然后采用隐式差分法求解抛物方程以步进计算结构辐射声场.重点介绍了该方法对浅海下结构声辐射计算的准确性、高效性以及快速收敛性后,对Pekeris波导中有限长弹性圆柱壳的声振特性进行了分析.研究得出,当圆柱壳靠近海面(海底)时,其耦合频率比自由场下的要高(低),当潜深达到一定范围时,与自由场耦合频率基本趋于一致;在低频远场,结构辐射场与同强度点源声场具有一定的等效性,且等效距离随着频率增加而增加;由于辐射声场受结构振动模态、几何尺寸和简正波模式影响,结构辐射场传播的衰减规律按近场声影响区、球面波衰减区、介于球面波和柱面波衰减区、柱面波衰减区四个扩展区依次进行.  相似文献   

2.
骆文于  于晓林  杨雪峰  张仁和 《中国物理 B》2016,25(4):44302-044302
An exact solution based on the wavenumber integration method is proposed and implemented in a numerical model for the acoustic field in a Pekeris waveguide excited by either a point source in cylindrical geometry or a line source in plane geometry. Besides, an unconditionally stable numerical solution is also presented, which entirely resolves the stability problem in previous methods. Generally the branch line integral contributes to the total field only at short ranges, and hence is usually ignored in traditional normal mode models. However, for the special case where a mode lies near the branch cut, the branch line integral can contribute to the total field significantly at all ranges. The wavenumber integration method is well-suited for such problems. Numerical results are also provided, which show that the present model can serve as a benchmark for sound propagation in a Pekeris waveguide.  相似文献   

3.
In this paper, a solution is developed to calculate the electric field at one point in space due to an electric dipole exciting an arbitrarily shaped dielectric body of revolution (BOR). Specifically, the electric field is determined from the solution of coupled surface integral equations (SIE) for the induced surface electric and magnetic currents on the dielectric body excited by an elementary electric current dipole source. Both the interior and exterior fields to the dielectric BOR may be accurately evaluated via this approach. For a highly lossy dielectric body, the numerical Green's function is also obtainable from an approximate integral equation (AIE) based on a surface boundary condition. If this equation is solved by the method of moments, significant numerical efficiency over SIE is realized. Numerical results obtained by both SIE and AIE approaches agree with the exact solution for the special case of a dielectric sphere. With this numerical Green's function, the complicated radiation and scattering problems in the presence of an arbitrarily shaped dielectric BOR are readily solvable by the method of moments.  相似文献   

4.
In this paper the complex-image approximation to the reflection coefficient for water over a seabed half-space is used to generate an image representation for a bounded acoustic waveguide with an underlying layered seabed. The images are true point sources; they have constant amplitudes which are raypath independent and, in the case of a Pekeris waveguide, frequency-independent. This image representation is ideal for constructing the Green's function kernel of the boundary integral equation method for target scattering in a waveguide. The singular behavior of the Green's function for an infinitesimal source/receiver separation, possibly with the target adjacent to one of the interfaces, is modeled correctly and the image expansion has a simple analytic form which can be analytically differentiated. The method is also accurate for significant source/receiver separations, which means that it can be used in the modeling of scattering from large-sized objects and can also be used as an efficient and accurate short-range propagation model for harmonic and broadband propagation in a penetrable waveguide.  相似文献   

5.
Near-field acoustic holography reconstruction of the acoustic field at the surface of an arbitrarily shaped radiating structure from pressure measurements at a nearby conformal surface is obtained from the solution of a boundary integral equation. This integral equation is discretized using the equivalent source method and transformed into a matrix system that can be solved using iterative regularization methods that counteract the effect of noise on the measurements. This work considers the case when the resultant matrix system is so large that it cannot be explicitly formed and iterative methods of solution cannot be directly implemented. In this case the method of surface decomposition is proposed, where the measurement surface is divided into smaller nonoverlapping subsurfaces. Each subsurface is used to form a smaller matrix system that is solved and the result joined together to generate a global solution to the original matrix system. Numerically generated data are used to study the use of subsurface extensions to increase the continuity of the global solution, and investigate the size of the subsurfaces, as well as the distance between the measurement and the vibrating surface. Finally a vibrating ship hull structure is considered as a physical example to apply and validate the proposed methodology.  相似文献   

6.
This paper presents a solution for the displacement of a uniform elastic thin plate with an arbitrary cavity, modelled using the biharmonic plate equation. The problem is formulated as a system of boundary integral equations by factorizing the biharmonic equation, with the unknown boundary values expanded in terms of a Fourier series. At the edge of the cavity we consider free-edge, simply-supported and clamped boundary conditions. Methods to suppress ill-conditioning which occurs at certain frequencies are discussed, and the combined boundary integral equation method is implemented to control this problem. A connection is made between the problem of an infinite plate with an arbitrary cavity and the vibration problem of an arbitrarily shaped finite plate, using the jump discontinuity present in single-layer distributions at the boundary. The first few frequencies and modes of displacement are computed for circular and elliptic cavities, which provide a check on our numerics, and results for the displacement of an infinite plate are given for four specific cavity geometries and various boundary conditions.  相似文献   

7.
提出一种可稳定计算Pekeris波导中声场的波数积分方法,并在此基础上开发出一个数值模型,可用于提供Pekeris波导中声场的精确、稳定的数值解。在这个方法中,由于与深度有关的波动方程齐次解中所有的上行波与下行波均采用了合理的归一化表示,从而得到的系统方程是无条件稳定的。在简正波方法中,割线积分一般只对近场有显著影响。因此,传统的简正波模型一般都忽略割线积分对声场的贡献。但是,如果某号简正波离割线非常近,则割线积分对非常远距离的声场仍可能有显著影响。在这种情况下,传统的简正波模型由于忽略割线积分的贡献,从而得到的声场结果是不准确的。本文通过数值算例比较本文提出的波数积分模型与传统的简正波模型。数值结果表明,本文提出的模型可以提供精确、稳定的Pekeris波导中声场的数值解,而在某些情况下传统的简正波模型得到的声场结果是不准确的。因此,本文提出的模型可以作为Pekeris波导中声传播问题的标准模型使用。   相似文献   

8.
甘勇  陈尧  石文泽  陈果  卢超 《应用声学》2019,38(2):173-178
利用虚拟声源和合成孔径聚焦相结合的复合成像技术解决复杂曲面构件超声检测图像中的缺陷位置失真问题。首先,在水浸检测条件下利用128阵元线性阵列换能器中采集曲面构件内部缺陷的B扫描数据。通过相邻阵元界面回波时间差构建虚拟声源,并将其定义为声波在水-构件双层界面上的入射点。然后,根据实际阵元-虚拟声源-聚焦目标三者之间的声传播路径,通过合成孔径聚焦技术将各路阵元的接收信号反推至虚拟声源处进行图像的延时叠加重建,最终获得复杂曲面构件中缺陷的超声图像。结果表明,与传统B扫图像和合成孔径聚焦图像相比,虚拟源-合成孔径聚焦图像能够准确呈现复杂曲面构件的表面轮廓,精确表征构件内部的缺陷位置。  相似文献   

9.
In this paper the virtual source technique is used to compute scattering of a plane wave from a periodic ocean surface. The virtual source technique is a method of imposing boundary conditions using virtual sources, with initially unknown complex amplitudes. These amplitudes are then determined by applying the boundary conditions. The fields due to these virtual sources are given by the environment Green's function. In principle, satisfying boundary conditions on an infinite surface requires an infinite number of sources. In this paper, the periodic nature of the surface is employed to populate a single period of the surface with virtual sources and m surface periods are added to obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible to obtain a convergent sum with relatively small number of terms (~40). The accuracy of the technique is verified by comparing its results with those obtained using the integral equation technique.  相似文献   

10.
Some numerical results in the time domain obtained with the spectral-element method are presented in order to illustrate the high potential of this technique for modeling the propagation of acoustic waves in the ocean in complex configurations. A validation for a simple configuration with a known solution is shown, followed by some simulations of the propagation of acoustic waves over different types of ocean bottoms (fluid, elastic, and porous) to emphasize the wide variety of media that can be considered within the framework of this method. Finally, a movie illustrating upslope propagation over a viscoelastic wedge is presented and discussed.  相似文献   

11.
This paper presents a numerical method for predicting the acoustic scattering from two-dimensional (2-D) thin bodies. Both the Dirichlet and Neumann problems are considered. Applying the thin-body formulation leads to the boundary integral equations involving weakly singular and hypersingular kernels. Completely regularizing these kinds of singular kernels is thus the main concern of this paper. The basic subtraction-addition technique is adopted. The purpose of incorporating a parametric representation of the boundary surface with the integral equations is two-fold. The first is to facilitate the numerical implementation for arbitrarily shaped bodies. The second one is to facilitate the expansion of the unknown function into a series of Chebyshev polynomials. Some of the resultant integrals are evaluated by using the Gauss-Chebyshev integration rules after moving the series coefficients to the outside of the integral sign; others are evaluated exactly, including the modified hypersingular integral. The numerical implementation basically includes only two parts, one for evaluating the ordinary integrals and the other for solving a system of algebraic equations. Thus, the current method is highly efficient and accurate because these two solution procedures are easy and straightforward. Numerical calculations consist of the acoustic scattering by flat and curved plates. Comparisons with analytical solutions for flat plates are made.  相似文献   

12.
This paper presents an investigation of the reconstruction of sound field parameters close to the surface of arbitrarily shaped sound sources. The field is reconstructed using nearfield acoustical holography (NAH) in spherical coordinates. Of particular interest are source shapes where the Rayleigh hypothesis is violated. To overcome the limitation of the minimal sphere given by the validity restriction of the Rayleigh hypothesis an algorithm is proposed for extracting local information from the nonconvergent NAH solution. For the assessment of the results an appropriate virtual test rig is developed employing the Kirchhoff-Helmholtz integral theorem.  相似文献   

13.
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.  相似文献   

14.
An exact approach is presented to compute the three-dimensional(3D) acoustic field in a homogeneous wedge-shaped ocean with perfectly reflecting boundaries. This approach applies the Fourier synthesis technique, which reduces a 3D point-source ideal wedge problem into a sequence of two-dimensional(2D) line-source ideal wedge problems, whose analytical solution is well established. A comparison of numerical efficiency is provided between this solution and the solution proposed by Buckingham,which is obtained by a sequence of integral transforms. The details of numerical implementation of these two solutions are also given. To validate the present approach and at the same time compare numerical efficiency between this approach and Buckingham's analytical solution, two numerical examples are considered. One is the Acoustical Society of America(ASA) benchmark wedge problem and the other is a wide-angle wedge problem. Numerical results indicate that the present approach is efficient and capable of providing accurate 3D acoustic field results for arbitrary receiver locations, and hence can serve as a benchmark model for sound propagation in a homogeneous wedge-shaped ocean.  相似文献   

15.
骆文于  于晓林  杨雪峰  张泽众  张仁和 《中国物理 B》2016,25(12):124309-124309
This paper presents a three-dimensional(3D) coupled-mode model using the direct-global-matrix technique as well as Fourier synthesis. This model is a full wave, two-way three-dimensional model, and is therefore capable of providing accurate acoustic field solutions. Because the problem of sound propagation excited by a point source in an ideal wedge with perfectly reflecting boundaries is one of a few three-dimensional problems with analytical solutions, the ideal wedge problem is chosen in this work to validate the presented three-dimensional model. Numerical results show that the field results by analytical solutions and those by the presented model are in excellent agreement, indicating that the presented model can serve as a benchmark model for three-dimensional sound propagation problems involving a planar two-dimensional geometry as well as a point source.  相似文献   

16.
I.IntroductionWhenastructurcvibratcs,itsvibratingsurfacewillmakesurroundingmediummovetogethcrwithit.Ifthernotionissofastthatthcmediumroundthestructureproduccaloca1contractionandcxpansionandthcypropagatefaraway,thesoundradiationisformed.Itispossiblctodcscribeanalytica11ytheradiationfic1dofsimplyandregularlyshapcdsourcessuchaspointsoundsourccs,spherica1soundsourccsandinflnite1engthllnearsoundsourccs,butitisa1mostimpossib1ctosolvetheradiationfiledbyanyanalyt-ica1methodforsourcesofvcrycomplicateds…  相似文献   

17.
A numerical method for sound propagation of higher-order cross-sectional modes in a duct of arbitrary cross-section and boundary conditions with nonzero, complex acoustic admittance has been considered. This method assumes that the cross-section of the duct is uniform and that the duct is of a considerable length so that the longitudinal modes can be neglected. The problem is reduced to a two-dimensional (2D) finite element (FE) solution, from which a set of cross-sectional eigen-values and eigen-functions are determined. This result is used to obtain the modal frequencies, velocities and the attenuation coefficients. The 2D FE solution is then extended to three-dimensional via the normal mode decomposition technique. The numerical solution is validated against experimental data for sound propagation in a pipe with inner walls partially covered by coarse sand or granulated rubber. The values of the eigen-frequencies calculated from the proposed numerical model are validated against those predicted by the standard analytical solution for both a circular and rectangular pipe with rigid walls. It is shown that the considered numerical method is useful for predicting the sound pressure distribution, attenuation, and eigen-frequencies in a duct with acoustically nonrigid boundary conditions. The purpose of this work is to pave the way for the development of an efficient inverse problem solution for the remote characterization of the acoustic boundary conditions in natural and artificial waveguides.  相似文献   

18.
A hybrid computer model, SOFIS, has been developed for the simulation of an enclosed virtual sound field in an arbitrary shaped enclosure. It can be used to calculate the impulse response and acoustical parameters of different positions in a virtual enclosure. This paper describes the way in which SOFIS models the sound source, the receiver and the sound propagation throughout the enclosed space with curved surfaces or barriers. A phase tracing method and the calculation of acoustic indexes are also discussed in this paper.  相似文献   

19.
A boundary element method for computing bandgap structures of two-dimensional photonic crystals is developed. For photonic crystals composed of a square or triangular lattice of parallel cylinders with arbitrarily shaped cross-sections, the boundary integral equations are formulated for a unit cell. Constant boundary elements are adopted to discretize the boundaries. Applying the periodic boundary conditions and the interface conditions, we obtain a linear eigenvalue equation with relatively small matrices. The solution of the eigenvalue equation yields the Bloch wave vectors for given frequencies. The convergence of the method for the desired accuracy and efficiency is examined by some typical numerical examples. It is shown that the present method is efficient and accurate and thus provides a flexible treatment of electromagnetic waves in periodic structures with inclusions of arbitrary shape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号