首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reaction of ZnO, HCl, H(3)PO(4), and 2-pyridylpiperazine in THF/H(2)O mixture at 75 degrees C for 72 h produces a new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(H(2)PO(4))(2)(HPO(4))], I. Zinc phosphate I consists of single four-ring (S4R) units with terminal phosphoryl groups hanging from the Zn center. On reaction with zinc acetate dihydrate in the presence of water at 100 degrees C, I gave another new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(2)(H(2)PO(4))(HPO(4))(PO(4))] x 2H(2)O, II. II has a layer structure with apertures formed by 4- and 8-T atoms (T = Zn, P). An examination of the two structures reveals that I and II are related, II being formed by the direct addition of Zn(2+) ions to I. Room-temperature (31)P MAS NMR studies show the presence of different phosphorus species in both compounds. An in-situ (31)P MAS NMR investigation on the formation of II from I in the presence of Zn(2+) ions and water reveals the transformation to be facile. What is noteworthy in this study is that the structural integrity of the S4Rs has been maintained during the formation of II. Donor-acceptor hydrogen bond interactions and pi-pi interactions involving the pyridyl groups also appear to play subtle roles in both phosphates. This study, the first attempt of its kind, combines the principles of supramolecular organic chemistry with inorganic building units and contributes to our understanding of the formation of framework solids.  相似文献   

2.
Employing achiral organic amines (2-methylbenzimidazole and 1,4-diazabicyclo[2.2.2]octane) as the structure-directing agent and ligand, two chiral zincophosphites, [Zn(C(8)H(8)N(2))(HPO(3))] 1 and (C(6)H(13)N(2))[Zn(3)(C(6)H(12)N(2))(HPO(3))(3)(H(2)PO(3))] 2, have been hydro(solvo)-thermally synthesized, crystallizing in the chiral space group P2(1)2(1)2(1). Single-crystal structural analysis reveals that compound 1 consists of alternating ZnO(3)N and HPO(3) units exhibiting a neutral one-dimensional chiral chain. Interestingly, the organic ligands interact with the inorganic chain via hydrogen-bonds in hydrogen-bonded helix fashion. Compound 2, a three-dimensional chiral open framework with 16-MR channels, is formed by the distorted {Zn(3)P(4)} secondary building unit (SBU). The organic amine molecules play dual roles as both ligands and countercations.  相似文献   

3.
Four enantiomerically pure 3D chiral POM-based compounds, [Ni(2)(bbi)(2)(H(2)O)(4)V(4)O(12)]2 H(2)O (1 a and 1 b) and [Co(bbi)(H(2)O)V(2)O(6)] (2 a and 2 b) (bbi=1,1'-(1,4-butanediyl)bisimidazole) based on the achiral ligand, different vanadate chains, and different metal centers have been synthesized by hydrothermal methods. Single-crystal X-ray diffraction analyses revealed that 1 a and 1 b, and 2 a and 2 b, respectively, are enantiomers. In 1 a and 1 b two kinds of vanadate chains with different screw axes link Ni cations to generate 3D chiral inorganic skeletons, which are connected by the achiral bbi ligands to form complicated 3D 3,4-connected chiral self-penetrating frameworks with (7(2)8)(7(2)8(2)9(2))(7(3)8(2)10) topology. They represent the first examples of chiral self-penetrating frameworks known for polyoxometalate (POM) systems. Contrary to 1 a and 1 b, in 2 a and 2 b the vanadate chains link Co(II) cations to generate 3D chiral inorganic skeletons, which are assembled from two kinds of heterometallic helical units of opposite chirality along the c axes. The chiral inorganic skeletons are connected by bbi to form 3D 3,4-connected chiral POM-based frameworks with (6(2)8)(2)(6(2)8(2)10(2)) topology. It is believed that the asymmetrical coordination modes of the metal cations in 1 a-2 b generate the initial chiral centers, and that the formation of the various helical units and the hydrogen bond interactions are responsible for preservation of the chirality and spontaneous resolution when the chirality is extended into the homochiral 3D-networks. This is the first known report of chiral POM-based compounds consisting of 3D chiral inorganic skeletons being obtained by spontaneous resolution upon crystallization in the absence of any chiral source, which may provide a rational strategy for synthesis of chiral POM-based compounds by using achiral ligands and POM helical units.  相似文献   

4.
Partially deprotonated inorganic oxoanions derived from sulfuric and phosphoric acids have been used to assemble organometallic cations in inorganic-organometallic hybrid systems. The organometallic sandwich cations [(eta(5)-C(5)H(5))(2)Co]+, [(eta(5)-C(5)Me(5))(2)Co]+ and [(eta(5)-C(5)Me(5))(2)Fe]+ have been used because they do not interfere with hydrogen bonding formation forcing self-assembling of the inorganic acids anions HSO(4)(-) and H(2)PO(4)(-) into hydrogen bonded mono- and bi-dimensional networks.  相似文献   

5.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

6.
The new molybdenum(V) nickel phosphate Na(6)Ni(6)[(Mo(2)O(4))(8)Ni(16)(H(2)PO(4))(4)(HPO(4))(10)(PO(4))(12)(OH)(6)(H(2)O)(8)].66H(2)O (1) was synthesized hydrothermally. The structure (orthorhombic, space group Cccm; a = 23.999(4), b = 36.595(6), c = 20.445(4) A) was solved from single-crystal data. The framework structure of 1 consists of anionic inorganic sheets formed by the linkages of large polyoxomolybdate rings via nickel(II) octahedra. Charge-compensating sodium atoms are interleaved between the sheets. Magnetic studies of compound 1 revealed that among the 22 nickel(II) centers, 10 are interacting. The chi(M)T = f(T) curve can be fitted using the dinuclear expression appropriate to the HDVV isotropic exchange Hamiltonian H = -2JS(1).S(2), with S(1) = S(2) = 1 and J = -24.1 cm(-)(1), showing that nickel is antiferromagnetically coupled within Ni(2) pairs.  相似文献   

7.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

8.
We explore the molecular properties of adsorbates that dramatically affect growth kinetics and morphology of the [100] face of archerite, also known as potassium dihydrogen phosphate (KH(2)PO(4) or KDP). Aqueous complexes of Al(III), Fe(III), and Cr(III) are known to affect KDP growth, albeit the actual step-pinning complex(es) is unknown. Using in situ atomic force microscopy (AFM), we measured changes in the growth rates of the [100] face of KDP with supersaturation in the presence of trace amounts of [Co(NH(3))(6)](3+), [Fe(CN)(6)](3-), eta(1)-[Co(NH(3))(5)HPO(4)](+), eta(2)-[Co(NH(3))(4)HPO(4)](+), eta(2)-[Co(NH(3))(4)P(2)O(7)H(2)](+), and [Rh(H(2)PO(4))(2)(H(2)O)(4)](+). Unlike in experiments using trivalent-metals, these complexes do not change stoichiometry or structure on the timescale of step motion, so that the actual molecular interactions that affect growth can be studied. Step velocity and morphology on the [100] face are unaffected by outer-sphere coordination complexes of either charge. Surprisingly, inner-sphere phosphatoammine complexes do not affect growth rates regardless of how the phosphate group is coordinated to the metal. However, doping the growth solution with [Rh(H(2)PO(4))(2)(H(2)O)(4)](+) results in profound step pinning, matching the behavior of KDP surfaces grown in the presence of Rh(III) after an equilibration period. Not only is an inner-sphere phosphate group needed to dock a trivalent metal to the step edge, but compatible hydrogen bonding of the remainder of the inner-sphere ligands with the bulk lattice is also essential.  相似文献   

9.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

10.
Li MX  Bai Y  Zhang BG  Duan CY  Xu J  Meng QJ 《Inorganic chemistry》2005,44(15):5459-5466
Heteropolynuclear organometallic compounds have been constructed by using the ferrocene-based ligand H(2)L, [NH(2)SCNHN=C(CH(3))(C(5)H(4))](2)Fe. Reaction of the ligand H(2)L with the cobalt(II) salt gave a tetranuclear helicate Co(2)Fe(2) (1) with two ferrocene-based clips wrapped around the two cobalt atoms. The chiral helicates recognized the neighbors with same chirality through intermolecular hydrogen bonding between the thiosemicarbazone moieties to form a one-dimensional chiral channel. Reaction of the ligand H(2)L with the cadmium(II) salt afforded a tetranuclear dimeric compound Cd(2)Fe(2) (2), with two symmetric related parts bridged through two sulfur atoms. Reaction of the ligand H(2)L with the copper(I) salt, in the presence of triethylamine, resulted in a hexanuclear compound Cu(4)Fe(2) (3) with a crownlike Cu(4)S(4) octagon similar to that of S(8) sited inside and two ferrocene-containing ligands positioned outside. Electrochemical measurements were displayed to investigate the redox communications between the ferrocene moieties through metal centers.  相似文献   

11.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

12.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

13.
The room-temperature crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)], an organically templated zinc phosphate containing [Zn(2)(HPO(4))(2)(H(2)PO(4))(4)](4)(-) molecular anions, and its transformation to compounds containing either one- or two-dimensional inorganic components, [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], or [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)], under hydrothermal conditions were studied in-situ using energy-dispersive X-ray diffraction. The ability to collect data during reactions in a large volume ( approximately 23 mL) Teflon-lined autoclave under real laboratory conditions has allowed for the elucidation of kinetic and mechanistic information. Kinetic data have been determined by monitoring changes in the integrated peak intensities of Bragg reflections and have been modeled using the Avrami-Erofe'ev expression. The crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] is a diffusion-controlled process, while nucleation is increasingly more important in determining the overall rate of the formation of [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)]. The transformation of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] to [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)] and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)] occurs via a dissolution-reprecipitation mechanism, while the transformation to [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)] may be the first observation of a direct topochemical conversion of one organically templated solid to another under hydrothermal conditions.  相似文献   

14.
15.
The possibility of PO(4)(3-) for MoO(4)(2-) partial substitution in the langbeinite framework has been studied by exploration of the K-Fe(Sc)-Mo(W)-P-O systems using the high-temperature solution method. It was shown that 1/3PO(4)(3-) for MoO(4)(2-) substitution leads to formation of three novel compounds K(2)Fe(MoO(4))(PO(4))(2), K(2)Sc(MoO(4))(PO(4))(2), and K(2)Sc(WO(4))(PO(4))(2) with slightly increased lattice parameters and significant distortion of the anion tetrahedra without structure changes. In contrast, the antiferromagnetic structure is modified by substitution in the low-temperature region. The structural peculiarities are discussed in light of bond-valence sums calculations.  相似文献   

16.
The manganese, cobalt, and cadmium complexes [M(dtbp)2]n (M = Mn (1) and Co 2) and [Cd(dtbp)2(H2O)]n (3) (dtbp = di-tert-butyl phosphate), which exist as one-dimensional molecular wires, transform to non-interpenetrating rectangular grids [M(dtbp)2(bpy)2.2H2O]n (M = Mn (4), Co (5), and Cd (6)) by the addition of 4,4-bipyridine (bpy) at room temperature. Products 4-6 have also been prepared by a room-temperature reaction or by solvothermal synthesis in methanol through a direct reaction between the metal acetate, di-tert-butyl phosphate, and 4,4'-bipyridine (bpy) in a 1:2:2 molar ratio. Single-crystal X-ray structure determination of 4-6 shows that these compounds are composed of octahedral transition metal ions woven into a two-dimensional grid structure with the help of bpy spacer ligands. The axial coordination sites at the metal are occupied by bulky unidentate dtbp ligands, which prevent any interpenetration of the individual grids. The change of reaction conditions from solvothermal to hydrothermal, for the attempted synthesis of a magnesium grid structure, however leads to the isolation of an organic phosphate [(H2bpy)(H2PO4)2] (7) and an inorganic phosphate [Mg(HPO4)(OH2)3] (8). Compound 7 can also be prepared quantitatively from a direct reaction between bpy and H3PO4. The new organic phosphate 7 is a unique example of a phosphate material with alternating layers of [H2bpy]2+ cations and [H2PO4]- anions that are held together by hydrogen bonds. Solid-state thermal decomposition of 4-6 produced the respective metaphosphate materials [M(PO3)2] (M = Mn (9), Co (10), and Cd (11)). All new metal-organic phosphates have been characterized by elemental analysis, thermal analysis (TGA, DTA, DSC), and IR and NMR spectroscopy. The metaphosphate ceramic materials were characterized by IR spectral and powder X-ray diffraction studies.  相似文献   

17.
Three new hybrid vanadates have been synthesized under hydrothermal conditions with the formula M(C(6)H(16)N(3))(2)(VO(3))(4), where M = Co(II), Ni(II) and Cu(II). The structural analyses show that the phases are isostructural and crystallize in the monoclinic space group P2(1)/c. These compounds show a two-dimensional crystal structure, with sheets composed of [VO(3)](n)(n-) chains and metal centres octahedrally coordinated, chelated by two 1-(2-aminoethyl)piperazonium ligands. The thermal study reveals that the copper containing phase is less stable than the cobalt and nickel containing ones. The IR spectra of the three phases are very similar, with little differences in the inorganic bond region of the copper containing phase. The UV-visible spectra show that the cobalt(II) and the nickel(II) are in slightly distorted octahedral environments. The catalytic tests show that the phases act as heterogeneous catalysts for the selective oxidation of alkyl aryl sulfides, with both H(2)O(2) and tert-butylhydroperoxide as oxidizing agents. The influence of the steric hindrance in the kinetic profile has been studied. The catalytic reactions induce the partial amorphization of the phases.  相似文献   

18.
Using the achiral diazine ligands bearing two bidentate pyridylimino groups as sources of conformational chirality, five azido-bridged coordination polymers are prepared and characterized crystallographically and magnetically. The chirality of the molecular units is induced by the coordination of the diazine ligands in a twisted chiral conformation. The use of L(1) (1,4-bis(2-pyridyl)-1-amino-2,3-diaza-1,3-butadiene) and L(2) (1,4-bis(2-pyridyl)-1,4-diamino-2,3-diaza-1,3-butadiene) induces spontaneous resolution, yielding conglomerates of chiral compounds [Mn(3)(L(1))(2)(N(3))(6)](n) (1) and [Mn(2)(L(2))(2)(N(3))(3)](n)(ClO(4))(n).nH(2)O (2), respectively, where triangular (1) or double helical (2) chiral units are connected into homochiral one-dimensional (1D) chains via single end-to-end (EE) azido bridges. The chains are stacked via hydrogen bonds in a homochiral fashion to yield chiral crystals. When L(3) (2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene) is employed, a partial spontaneous resolution occurs, where binuclear chiral units are interlinked into fish-scale-like homochiral two-dimensional (2D) layers via single EE azido bridges. The layers are stacked in a heterochiral or homochiral fashion to yield simultaneously a racemic compound, [Mn(2)(L(3))(N(3))(4)](n) (3a), and a conglomerate, [Mn(2)(L(3))(N(3))(4)](n).nMeOH (3b). On the other hand, the ligand without amino and methyl substituents (L(4), 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene) does not induce spontaneous resolution. The resulting compound, [Mn(2)(L(4))(N(3))(4)](n) (4), consists of centrosymmetric 2D layers with alternating single diazine, single EE azido, and double end-on (EO) azido bridges, where the chirality is destroyed by the centrosymmetric double EO bridges. These compounds exhibit very different magnetic behaviors. In particular, 1 behaves as a metamagnet built of homometallic ferrimagnetic chains with a unique "fused-triangles" topology, 2 behaves as a 1D antiferromagnet with alternating antiferromagnetic interactions, 3a and 3b behave as spin-canted weak ferromagnets with different critical temperatures, and 4 also behaves as a spin-canted weak ferromagnet but exhibits two-step magnetic transitions.  相似文献   

19.
Hydrothermal conditions have been used in the preparation of a series of organic-inorganic hybrid materials of the cobalt-molybdophosphonate family. The reactions of MoO(3), cobalt(II) acetate or cobalt(II) acetylacetonate, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))nPO(3)H(2) (n = 1-5 and 9) of varying tether lengths yielded compounds of the general type {Co(2)(tpyprz)(H(2)O)(m)}4+/MoxOy{O(3)P(CH(2))(n)PO(3)}z. The recurring theme of the structural chemistry is the incorporation of {Mo(5)O(15)(O(3)PR)(2)}(4-) clusters as molecular building blocks observed in the structures of nine phases (compounds 2-9 and 11). The structural consequences of variations in reaction conditions are most apparent in the series with propylene diphosphonate, where four unique structures 4-7 are observed, including two distinct three-dimensional architectures for compounds 5 and 6 whose formulations differ only in the number of water molecules of crystallization. With pentyldiphosphonate, a second phase 10 is obtained which exhibits a unique cluster building block, the hexamolybdate [Mo(6)O(18){O(3)P(CH(2))(5)PO(3)}](4-). In the case of methylenediphosphonic acid, a third structural motif, the trinuclear {(Mo(3)O(8))(O(3)PCH(2)PO(3))}2- subunit, is observed in compound 1. The structural chemistry of compounds 1-11 of this study is quite distinct from that of the {Ni(2)(tpyprz)(H(2)O)(m)}(4+)/Mo(x)O(y){O(3)P(CH(2))(n)PO(3)}z family, as well as that of the copper-based family. The structural diversity of this general class of materials reflects the coordination preferences of the M(II) sites, the extent of aqua ligation to the M(II) sites, the participation of both phosphate oxygen atoms and molybdate oxo-groups in linking to the M(II) sites, and the variability in the number of attachment sites at the molybdophosphonate clusters. Since the charge densities at the peripheral oxygen atoms of the clusters are quite uniform, the attachment of {M(2)(tpyprz)}(4+) subunits to the molybdophosphonates appears to be largely determined by steric, coulombic, and packing factors, as shown by extensive density functional theory calculations.  相似文献   

20.
Two novel sandwich-type polyanions containing hexagonal {V=O}(6) group (H(2)tpy)(Hbpe)(3)H[(VO)(6)(SbW(9)O(33))(2)]·2H(2)O (1) and (H(2)tcy)(6)(Hbpp)(6)H(4)[VW(12)O(40)][(VO)(6)(SbW(9)O(33))(2)](3)·30H(2)O (2) (tpy = 4-(2,3,4-tri(pyridin-4-yl)butyl)pyridine, bpe = 1,2-(4-pyridyl)ethene, tcy = 1,2,4,5-tetra(pyridin-4-yl)cyclohexanol, bpp = 1,3-bis-(4-pyridyl)propane), were reported. Both compounds are built upon the complex hydrogen bonding networks of C-H···O and N-H···O occurred among inorganic anions and organic cations. Unusual in situ organic reactions involving C-C coupling are also observed in 1 and 2 regardless of the rigid bpe or flexible bpp. Compound 2 represents a rare case in which nano-sized α-Keggin [VW(12)O(40)](4-) and sandwich-type [(VO)(6)(SbW(9)O(33))(2)](6-) anionic clusters are present in a common crystal framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号