首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ability to prepare well‐defined semiconducting polymers is essential for understanding the link between structure and function in organic photovoltaic devices. A general, one‐pot method for altering the degree of functionality of end‐functionalized poly(3‐hexylthiophene)s (P3HT) prepared by Grignard metathesis (GRIM) polymerization has been developed. In the absence of additives, the degree of functionality of end‐functional P3HTs prepared by quenching of the GRIM polymerization with a Grignard reagent is dependent on the Grignard reagent utilized. In this study, additives such as styrene and 1‐pentene are shown to alter the end‐group composition of tolyl‐functionalized P3HTs as determined by Matrix‐assisted Laser Desorption Ionization Time‐of‐flight Mass Spectrometry. In particular, when quenching the GRIM polymerization with tolylmagnesium bromide, a modest decrease in the difunctional product is observed, and the yield of the monofunctional product increases significantly. Temperature and lithium chloride (LiCl) addition also play impactful roles. Monofunctional P3HT is found to be the major product (72% abundance) when the functionalization is done in the presence of LiCl and styrene at 0 °C, whereas in the absence of additives the monofunctional product is present at only 11% abundance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Regioregular poly(3‐hexyl thiophene) (rr‐P3HT)‐based star polymers were synthesized by a crosslinking reaction of the linear rr‐P3HT macroinitiator and ethylene glycol dimethacrylate (EGDMA) crosslinker through Ru‐based atom transfer radical polymerization (ATRP), where the rr‐P3HT macroinitiator was prepared by Grignard metathesis method (GRIM) followed by end functionalization of the ATRP initiator with chlorophenylacetate (CPA) to the rr‐P3HT. Relatively high molecular weight of the star polymers were obtained (Mp = 8,988,000 g/mol), which consisted of large numbers of the rr‐P3HT arm chains radiating from the EGDMA‐based microgel core. The yield of the star polymers were strongly affected by the added amount of the EGDMA crosslinker. The crystalline structure of the rr‐P3HT by intermolecular π‐π stacking interaction gradually decreased as the star polymer formed, which was confirmed by differential scanning calorimeter (DSC), atomic force microscopy (AFM), and electro‐optical analyses. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The post‐functionalization of poly(3‐hexylthiophene) (P3HT) via various synthetic routes is reported. Well‐defined and monofunctionalized ω‐thiol‐terminated P3HT, ω‐carboxylic acid‐terminated P3HT, ω‐acrylate‐terminated P3HT, and ω‐methacrylate‐terminated P3HT are obtained in high yields through a straightforward procedure. From those, different novel P3HT‐based graft copolymers are synthesized following two routes: “grafting onto” and “grafting through” (macromonomer polymerization) methods. The synthesis of three types of graft copolymers is described. Each one has “rod” P3HT‐grafted side chains on a “coil” main chain, which can be polyisoprene, poly(vinyl alcohol), or poly(butyl acrylate). Each copolymer is characterized by size‐exclusion chromatography and NMR.  相似文献   

4.
Block copolymers of regioregular poly(3-hexylthiophene) (P3HT) and polyethylene (PE) were synthesized through the chain transfer of olefin-terminated P3HT in the presence of cyclooctene via ring-opening metathesis polymerization (ROMP). Subsequent hydrogenation of the poly(cyclooctene) block yielded high molecular weight, crystalline-crystalline P3HT-PE block copolymers, which are thermally stable and resistant to solvents under ambient conditions. These copolymers were characterized by 1H NMR, DSC, and WAXS and represent the first materials of a class of crystalline-crystalline semiconducting-insulating block copolymers.  相似文献   

5.
Here an in‐depth analysis of reversible addition–fragmentation chain transfer (RAFT) polymerization kinetics is reported in order to provide better definition of poly(3‐hexylthiophene) (P3HT) rod–coil block copolymers thru a more thorough understanding of the RAFT polymerization of the coil block. To this end, a new P3HT macroRAFT agent is synthesized and utilized to prepare rod–coil block copolymers with P3HT and poly(styrene), poly(tert‐butylacrylate), and poly(4‐vinylpyridine), and the RAFT polymerization kinetics of each system are fully detailed. This is achieved by a comprehensive analysis of characterization data from 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, and matrix‐assisted laser desorption ionization time of flight spectroscopy, which are used as complementary techniques in order to address difficulties in accurately characterizing the synthesized polymer systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3575–3585  相似文献   

6.
Here we report syntheses, photophysical properties, and morphologies of a series of coil‐rod‐coil ABA triblock copolymers containing highly regioregular poly(3‐hexylthiophene) (P3HT) as the central rod block. A new methodology, based on the coupling reaction between living polymeric anions [polystyrene, polyisoprene, and poly(methyl methacrylate)] and aldehyde terminated P3HT, was successfully developed to synthesize the triblock copolymers with low polydispersities. This coupling reaction was effective for building blocks with a variety of molecular weights; therefore, a good variation in compositions of the triblock copolymers could be feasibly achieved. The non‐P3HT coil segments and the solvents were found to exhibit noticeable effects on morphologies of the spin‐coated thin films. Attachment of the coil segments to P3HT did not change the optical absorption of the P3HT segment as the block copolymers were dissolved in solution regardless the chemical structure and the molecular weight of the coil segment. Interestingly, different UV–vis absorption behaviors were observed for the spin‐coated thin films of the block copolymers, which closely related to their morphologies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3311–3322, 2010  相似文献   

7.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

8.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

9.
Novel fullerene‐grafted poly(3‐hexylthiophene) (P3HT)‐based rod‐coil block copolymers have been synthesized. The regioregular P3HT rod block has been synthesized by a modified Grignard metathesis reaction (GRIM). An original in situ end‐capping reaction has been developed in order to convert the P3HT block into an efficient macro‐initiator for the nitroxide‐mediated radical polymerization (NMRP) of the coil block. Controlled radical polymerization of the second poly(butylacrylate‐stat‐chloromethylstyrene) [P(BA‐stat‐CMS)] block has been done through various conditions leading to different coil block lengths. The final electron donor‐acceptor block copolymer has been obtained after C60 grafting in soft conditions. Copolymers have been characterized by 1H NMR and size exclusion chromatography. Optical characterizations, before and after C60 grafting, are reported.

  相似文献   


10.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Grignard Metathesis polymerization (GRIM) for the synthesis of regioregular poly(3‐alkylthiophenes) proceeds via a “living” chain growth mechanism. Due to the “living” nature of this polymerization regioregular poly(3‐alkylthiophenes) with predetermined molecular weight, narrow molecular weight distributions and desired chain end functionality are now readily available. Allyl terminated poly(3‐hexylthiophene) was successfully used as a precursor for the synthesis of di‐block copolymers containing polystyrene. The addition of “living” poly(styryl)lithium to the allyl terminated regioregular poly(3‐hexylthiophene) generated the di‐block copolymer. Poly(3‐hexylthiophene)‐b‐polystyrene was also synthesized by atom transfer radical polymerization. Integration of poly(3‐hexylthiophene) in di‐block copolymers with polystyrene leads to the formation of nanowire morphology and self‐ordered conducting nanostructured materials.  相似文献   

12.
Amphiphilic graft copolymers consisting of poly(vinyl chloride)(PVC) main chains and poly(4-vinyl pyridine)(P4VP) side chains were synthesized via atom transfer radical polymerization(ATRP) using direct initiation of chlorine atoms. The successful synthesis of PVC-g-P4 VP graft copolymers was confirmed by Fourier transform infrared spectroscopy(FTIR) and proton nuclear magnetic resonance(1H-NMR). Transmission electron microscope(TEM) and small angle X-ray scattering(SAXS) analysis showed that PVC-g-P4 VP exhibited microphase-separated, ordered structure with 37.6 nm of domain spacing, which was not observed in neat PVC. For antibacterial applications, the tertiary nitrogen atoms of PVC-gP4 VP was quaternized using 1-bromohexane, as confirmed by FTIR measurements. Bacteria including Escherichia coli(E. coli), Staphylococcus aureus(S. aureus), Bacillus cereus(B. cereus), and Pseudomonas aeruginosa(P. aeruginosa) were completely killed in 24 h on the quaternized PVC-g-P4VP(46% grafting) surface, indicating its excellent antibacterial behavior while it showed to be cytotoxic to mammalian cell.  相似文献   

13.
Two block copolymers of isotactic polypropylene and 1,4 polybutadiene were synthesized using techniques involving a transformation from anionic to Ziegler–Natta polymerization mechanisms. The yield of block copolymer was about fifteen percent (weight basis) in both polymerizations, the remainder being unreacted polybutadiene from the first block synthesis. Molecular characterization experiments and model reactions were consistent with a block-like structure for the copolymers; definitive evidence for the proposed molecular structure was obtained through transmission electron microscopy which clearly revealed microphase-separated morphologies characteristic of block copolymers.  相似文献   

14.
The amphiphilic gradient copolymers of 2,2,2-trifluoroethyl methacrylate (TFEMA) and acrylic acid (AA) have been synthesized by using amphiphilic RAFT agent via emulsifier-free emulsion polymerization with a starved feed method of adding TFEMA. Different cosolvents are added into polymerization system to inhibit AA's homopolymerization of in aqueous phase. RAFT polymerization kinetics under different reaction conditions are discussed in detail. (1)H NMR results indicate that the obtained copolymer has a chain structure with AA segments gradually changing to TFEMA segments. The copolymer latexes exhibit good pH stability (pH value from 5 to 14) and Ca(2+) stability. The self-assembly behavior of gradient copolymers in selective solvents are observed and studied by transmission electron microscopy. All the copolymers can form spherical micelles, but the homogeneity and size of micelles are different.  相似文献   

15.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

16.
提出了一种简单易行的合成聚二甲基硅氧烷大分子偶氮引发剂的方法.通过羟基封端的聚二甲基硅氧烷(HO-PDMS-OH)与4,4′-偶氮-二(4-氰基戊酸)(ACPA)在十分温和的条件下直接进行一步缩聚反应,合成了含有PDMS链段的大分子偶氮引发剂.用这种大分子引发剂来引发聚(乙二醇)甲醚甲基丙烯酸酯大分子单体(PEGMA)进行自由基溶液聚合,得到了一系列两亲性梳状嵌段共聚物(PDMS-PEG).  相似文献   

17.
蓖麻油与乳酸的共聚物合成与表征   总被引:2,自引:1,他引:1  
用熔融聚合法合成了一种蓖麻油和乳酸的共聚物.以丁二酸酐作为共聚体系的引发剂和封端剂,制得端羧基共聚物P(LA-CO)-COOH.研究了反应条件对共聚物分子量的影响,通过核磁共振表征了共聚物的结构.DSC和TG研究表明,蓖麻油链段的引入破坏了聚乳酸的结晶性,提高了共聚物的热稳定性.  相似文献   

18.

A functionalized compound, 4‐(2‐bromoisobutyryl)‐2,2,6,6‐tetra‐methylpiperidine‐1‐oxyl (Br‐TEMPO), was synthesized and used to synthesize block copolymers through tandem nitroxide‐mediated radical polymerization (NMRP) and atom transfer radical polymerization (ATRP). First, Br‐TEMPO was used to mediate the polymerization of styrene. The kinetics of polymerization proved a typical “living” nature of the reaction and the effectiveness in the mediation of polymerization of Br‐TEMPO. Then the PS‐Br macroinitiator was used to initiate atom transfer radical polymerization (ATRP). A series of acrylates were initiated by PS‐Br macroinitiators in typical ATRP processes at various conditions. The controlled polymerization of ATRP was also confirmed by molecular weight and kinetic analysis. Several cleavable block copolymers of PS‐b‐P(t‐BA), PS‐b‐P(n‐BA), and PS‐b‐PMA, with different molecular weights, were synthesized via this strategy. Relatively low polydispersities (<1.5) were observed and the molecular weights were in agreement with the theoretical ones. Hydrolysis of PS‐b‐P(t‐BA) was carried out, giving amphiphilic block copolymer PS‐b‐PAA without the cleavage of C‐ON bond or ester bond. All the block copolymers have two Tgs as demonstrated by DSC. A typical cleavable block copolymer of PS‐b‐PMA was cleaved by adding phenylhydrazine at 120°C to produce homopolymers in situ.  相似文献   

19.
Controlling the self‐assembly morphology of π‐conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3‐hexylthiophene)‐block‐poly(phenyl isocyanide)s (P3HT‐b‐PPI) copolymers composed of π‐conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization‐driven asymmetric self‐assembly (CDASA) of the block copolymers lead to the formation of single‐handed helical nanofibers with controlled length, narrow dispersity, and well‐defined helicity. During the self‐assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single‐handed helical assemblies of the block copolymers exhibited interesting white‐light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.  相似文献   

20.
Charge transport in poly(3-alkylthiophene)s (P3AT)s is closely linked to the nanoscale organization of crystallites. Block copolymer morphologies provide an ideal platform to study crystallization as the chain ends are tethered at a known interface in a well-defined geometry. The impact of soft versus hard confinement on P3EHT crystallization was studied using poly(3-(2′-ethyl)hexylthiophene) (P3EHT) containing diblocks with both rubbery poly(methyl acrylate) (PMA) and glassy polystyrene (PS) blocks. Here, P3EHT's lower melting point relative to the commonly studied poly(3-hexylthiophene) (P3HT) facilitated its confined crystallization and makes it an ideal model system. While transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed well-ordered lamellar morphologies both in the melt and post-crystallization for both sets of diblocks, the glassy blocks inhibit confined crystallization of P3EHT relative to rubbery matrix blocks. Analysis of aligned diblocks by both SAXS and wide angle X-ray scattering (WAXS) revealed that the P3EHT chain axis aligns perpendicular to domain interfaces, allowing preferential growth of the alkyl-chain and π–π stacking directions parallel to lamellae. Finally, it was shown that following diblock self-assembly in the melt, crystallite growth drives expansion of microdomains to match the P3EHT contour length. It was concluded that P3EHT chains adopted an extended conformation within confined crystallites due to the rigid nature of polythiophenes relative to flexible chain crystalline polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 205–215  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号