首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   

2.
Fast, simple and template-free method is proposed for preparation of ZnO nanocrystallines in the presence of 1-ethyl-3- methylimidazolium ethyl sulfate, [EMIM][EtSO4], a room-temperature ionic liquid (RTIL) under microwave irradiation. The powder X-ray diffraction (XRD) studies display that products are excellently crystallized in the form of wurtzite hexagonal structure. Energy dispersive X-ray spectroscopy (EDX) investigations reveal that the products are extremely pure. The results obtained by scanning electron microscopy (SEM) demonstrate that mean size of ZnO nanocrystallines decreases with microwave irradiation time and the RTIL content of media. Diffuse reflectance spectra (DRS) of the ZnO nanocrystallines shows blue shift relative to the bulk ZnO, which can be attributed to quantum confinement effect of ZnO nanocrystallines. A possible formation mechanism of the ZnO nanocrystallines in aqueous solution of the RTIL is presented. Photocatalytic activity of the ZnO nanocrystallines towards photodegradation of methylene blue (MB) was carried out. The results demonstrate that photocatalytic activity of the ZnO nanocrystallines increases with microwave irradiation time and the RTIL content of media.  相似文献   

3.
Andrographolide (Andro) (Figure 1) is a diterpene lactone isolated from Andrographis paniculate Nees1. It has showed several biological activities including analgesic, antipyretic and anti-inflammatory effects2. However, its poor water solubility and unstability towards oxygen restrained its application. In pharmaceutics, b-CD is used to increase solubility and stability3. We have prepared the inclusion compound of Andro/b-CD (Figure 2) under microwave irradiation4. It has been found…  相似文献   

4.
New foaming method, enhanced by microwave irradiation, was elaborated and applied to obtain porous poly(vinyl chloride) and its composites with fine cell structure. The so called “thermal runaway” effect was observed during the heating of poly(vinyl chloride) under microwave irradiation. The temperature of this effect decreases as a result of additives incorporation into polymer matrix. Microwave irradiation allowed effective heating of extruded poly(vinyl chloride) and its composites with carbon black (CB) filler, behind the extruder head and decomposing azodicarbonamide (ADC) to obtain porous products. The use of CB additive to poly(vinyl chloride) significantly increased its ability to be heated under microwave irradiation as well as improved the cell structure and decreased the apparent density of final products.Among additionally used fillers (1 wt%) the montmorillonite caused the apparent density decrease of foamed materials ca. 10%, however beneficially influenced on the quality of cells structure, giving the products with isotropic cells and the highest cell density as well as keeping the tensile strength on similar level as in the case of the materials with CB and ADC only.  相似文献   

5.
Microwave heating has several advantages over traditional methods of heating, including rapid and uniform heating, greater penetration depth of heat into material, lower power costs and selective heating within the material and so on. In this paper, effects of microwave heating on the properties of high‐density polyethylene/carbon black (HDPE/CB) composites were studied. The results show that the HDPE/CB composites can be heated via microwave irradiation, and composites with different CB concentration exhibit different microwave heatability. The 20 wt% CB composites have the most rapid heating rate, and its temperature reaches 78°C after 10 sec, and 159°C after 150 sec, respectively. Meanwhile, microwave heating improves the mechanical properties of HDPE/CB composites. Scanning Electron Microscopy (SEM) analysis shows a better combination between CB particles and HDPE after microwave irradiation. Furthermore, selective heating of microwave was used to prepare a novel oriented structure, which the core layer has preferential orientation and the surface layer has little orientation. Characterization of the novel oriented structure was also studied. Wide angle X‐ray diffraction (WAXD) analysis of 25 wt% CB composites with the novel oriented structure shows that the diffraction peaks of the surface layer are obviously weaker than those of the core layer, which indicates that orientation in the core layer is more intensive than that in the surface layer. The novel oriented structure is different to the traditional skin‐core structure, in which the surface layer has preferential orientation and the core layer has little orientation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
夏敏 《合成化学》2005,13(4):378-380
在无溶剂微波辐射下,芳醛或亚胺在中性三氧化二铝吸附的单质碘催化下快速地与吲哚发生亲电取代反应制得双吲哚甲烷衍生物(收率70%一97%),其结构经^1H NMR,IR和元素分析表征。  相似文献   

7.

Different types of 4,5-disubstituted 1,2,4-triazole-3-thiones were prepared by microwave irradiation as well as by a classical method. The beneficial effect of microwave irradiation on the dehydrative cyclization of thiosemicarbazides in different reaction media is described. Our results show that the effect of microwave irradiation on the reaction studied was the shortening of reaction times (from 2–9 h to 2–4 min) and a minor decrease (1–4%) in yields. The structure of the new compounds was established by FTIR, MS, and 1H NMR spectral data.  相似文献   

8.
We describe herein a fast and rapid technique for preparation of N-phthaloyl amino acids under microwave irradiation. The microwave methodology is rapid, convenient, proceeds under mild conditions, and gives a better yield (81–98%) and high purity of the title compounds. The spectral data as well as the X-ray analysis established the structure of the prepared N-protected amino acids.  相似文献   

9.
微波辐射对淀粉结构及性质的影响   总被引:9,自引:0,他引:9  
简单地介绍了微波对淀粉的辐射作用,并综述了微波辐射对淀粉形态结构和结晶结构以及淀粉凝胶化性质、热性质等影响的国内外研究进展,如微波辐射可改变淀粉颗粒形状、结晶结构及其结晶度.微波辐射时间及辐射能等技术参数能够改变淀粉的凝胶化性质,而淀粉的含水量也是重要的影响因素.淀粉的溶解性、润胀性和吸水性都会因微波辐射而较原淀粉下降.  相似文献   

10.
微波辐射活性炭负载磷钨酸催化合成季戊四醇双缩酮(醛)   总被引:13,自引:1,他引:13  
袁先友  蒋小平  张敏  尹笃林 《合成化学》2003,11(1):52-55,64
在微波辐射下,以活性炭负载磷钨酸为催化剂,不用溶剂,合成了8种季戊四醇双缩酮(醛),以环己酮与季戊四缩的缩合为模型反应进行优化,其优化反应条件为:季戊四醇2.0g,催化剂0.3g,环己酮4.0mL,微波输出功率600W,辐射时间3min,产率达95.4%,该条件下的反应速度是常规加热反应速度的30倍,所得产物经元素分析,IR和1H NMR表征。  相似文献   

11.

A super‐absorbent polymer was prepared by grafting copolymerization of acrylic acid onto Artemisia seed gum, using microwave irradiation and ammonium persulfate as an initiator. The effect of various preparation conditions on its water absorbency, such as the ratio of acrylic acid to Artemisia seed gum, degree of acrylic acid neutralization, amount of initiator and microwave irradiation time, was investigated by orthogonal tests. The optimal reaction conditions were 3 min (irradiation time), 70% neutralization degree of acrylic acid and 2% initiator on the basis of the mass of acrylic acid used. When the mass ratio of acrylic acid to Artemisia seed gum is 5:0.5, the product has a water absorbency close to 400 times at room temperature in distilled water, this indicated that is has a high water absorbency. The structure of the graft copolymer was confirmed by Fourier transform infrared spectrometer (FT‐IR) and thermogravimetric analysis (TGA). Further more, this microwave irradiation processing method to prepare water absorbent materials has no industrial cast off produced, that is to say, this method is environmentally friendly.  相似文献   

12.
A simple microwave irradiation method for the large-scale synthesis of submicrometer-sized TiO2 rods at normal atmospheric pressure and the boiling temperature of the solvent is demonstrated. It is emphasized that only 1-3 min of microwave irradiation is adequate to react tetra-isopropyl orthotitanate with ethylene glycol to produce rods of titanium glycolate [TG] with diameters of approximately 0.4 microm and lengths up to 5 microm. The as-formed TG rods, followed by calcination under air for 2 h, fabricated anatase (500 degrees C) and rutile (900 degrees C) titania without changing their rod-shaped morphology. The crystallinity, structure, morphology, and thermal analysis are carried out by several techniques. A mechanism based on microwave superheating phenomena is presented with the support of previous reports and several control experiments.  相似文献   

13.
芳醛(1),5,5-二甲基-1,3-环已二酮(2),麦氏酸(3)经微波辐射3~5min,不需任何催化剂,得到4-芳基-7,7-二甲基-5-氧代-3,4,5,6,7,8-六氢香豆素(4)。产物的结构经红外、核磁、元素分析及X-射线衍射法确证。对反应过程提出了可能的机理。  相似文献   

14.
The inclusion complex of beta-cyclodextrin with gossypol was synthesized by using a convenient method of microwave irradiation. The structure of the complex was determined by 1H NMR, IR spectroscopy, and as well as the elemental analysis; the thermal stability was studied by means of differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The association constant between gossypol and beta-cyclodextrin measured via UV spectroscopy was 4462M(-1) at room temperature, following stoichiometry 1:2.  相似文献   

15.
Pretreatment of silica gel sample containing 1-naphthylamine by microwave-assisted desorption (MAD) coupled to in situ headspace solid phase microextraction (HS-SPME) has been investigated as a possible alternative to conventional methods prior to gas chromatographic (GC) analysis. The 1-naphthylamine desorbs from silica gel to headspace under microwave irradiation, and directly absorbs onto a SPME fiber located in a controlled-temperature headspace area. After being collected on the SPME fiber, and desorbed in the GC injection port, 1-naphthylamine is analyzed by GC-FID. Parameters that influence the extraction efficiency of the MAD/HS-SPME, such as the extraction media and its pH, the microwave irradiation power and irradiation time as well as desorption conditions of the GC injector, have been investigated. Experimental results indicate that the extraction of a 150 mg silica gel sample by using 0.8 ml of 1.0 M NaOH solution and a PDMS/DVB fiber under high-powered irradiation (477 W) for 5 min maximizes the extraction efficiency. Desorption of 1-naphthylamine from the SPME fiber in GC injector is optimal at 250 °C held for 3 min. The detection limit of method is 8.30 ng. The detected quantity of 1-naphthylamine obtained by the proposed method is 33.3 times of that obtained by the conventional solvent extraction method for the silica gel sample containing 100 ng of 1-naphthylamine. It provides a simple, fast, sensitive and organic-solvent-free pretreatment procedure prior to the analysis of 1-naphthylamine collected on a silica gel adsorbent.  相似文献   

16.
In this study, titanium dioxide nanoparticles (NPs) were synthesized using the home microwave method, and the effect of the microwave irradiation time on the structure of NPs was investigated. In addition, the morphological effect of these NPs on the toxicity of HDMSCs cells was investigated. The crystalline structure and morphology of the NPs were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM); the cytotoxicity was determined by the methyl thiazolyl tetrazolium (MTT) assay. X-ray diffraction analysis revealed that all thin films had a polycrystalline nature with an anatase phase of TiO2. It was also found that the crystallite size increased with increasing microwave radiation time. The FTIR spectrum showed Ti-O-Ti properties by the peak in the range between 527 and 580 cm?1. Further, the FE-SEM images showed that the grain size increased with increasing irradiation time. The MTT assay results showed that the accumulation of NPs leads to toxicity.  相似文献   

17.
In this paper, we present a new procedure for the rapid synthesis of luminescent ZnSe nanocrystals in aqueous phase by microwave irradiation with controllable temperature. The effects of microwave irradiation and experimental conditions on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of pH value of reaction solutions, molar ratio of precursors, and heating time of microwave irradiation on the optical properties of the ZnSe nanocrystals. A series of nanocrystals with different size was prepared in 1 h, and the photoluminescence quantum yield reached up to 17% at the optimal reaction condition. The results of HRTEM and XRD showed that the as-prepared nanocrystals had high crystallinity. The characterizations of EDS spectra and elemental analysis showed that the sulfur content of nanocrystals increased with the growth of nanocrystals. We speculated that the structure of nanocrystals was an alloy ZnSe(S) shell on the surface of the ZnSe particles core. Furthermore, we found that the oxygen from air in the reaction vessel played an important role in the decomposition of the thiol group under microwave irradiation.  相似文献   

18.
The synthesis of a polymer‐supported inhibitor (PSI) and its inhibition performance for free‐radical polymerization are reported for the first time. A special method has been devised to synthesize PSI with pure and abundant hydroquinone (HQ) groups anchored onto the polymer surface. A thin HQ/acetone (AC) solution is sandwiched between two polymer films. Under ultraviolet irradiation, AC as an photoinitiator quickly and effectively grafts HQ onto the polymer surface. PSI has been characterized with ultraviolet–visible and attenuated total reflectance/Fourier transform infrared spectroscopy. For potential applications, PSI has been used to inhibit the thermal polymerization of styrene and methyl methacrylate. The corresponding inhibition performance has been investigated through the measurement of the induction period with the dilatometer method. With the same absolute amount, the maximum inhibition ability of PSI approaches half that of a free inhibitor. Increasing the dispersion degree of PSI is favorable for the enhancement of the inhibition ability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4074–4083, 2004  相似文献   

19.
The possible influence of the application of microwave energy to a reversed-phase liquid chromatography column on the mass transfer kinetics and the thermodynamics of equilibrium between mobile and stationary phases was examined. Chromatograms of propylbenzene and phenol were recorded under the same experimental conditions, on the same column, successively irradiated and not. The effect of microwave irradiation on the mass transfer kinetics was determined by measuring the second moment of small pulses of propylbenzene in a 70:30 (v/v) solution of methanol in water and microwave outputs of 15 and 30 W. The effect of microwave irradiation on the equilibrium thermodynamics was determined by measuring the elution time of breakthrough curves of phenol at high concentrations in a 20:80 (v/v) solution of methanol and water and microwave outputs of 15, 50, and 150 W. A qualitative comparison of the profiles of the propylbenzene peaks obtained with and without irradiation suggests that this irradiation affects significantly the peak shapes. However, a qualitative comparison of the profiles of the breakthrough curves of phenol obtained with and without irradiation suggests that this irradiation has no significant effect on their shapes. The peak sharpening observed may be due to an increase in the diffusivity, resulting from the dielectric polarization under microwave irradiation. This effect is directly related to an increase of the rate of mass transfers in the column. In contrast, the similarity of the overloaded band profiles at high concentrations suggests that the equilibrium thermodynamics is unaffected by microwave irradiation. This may be explained by the transparence of the stationary phase to microwaves at 2.45 GHz. The column temperature was measured at the column outlet under irradiation powers of 15, 30, 50, and 150 W. It increases with increasing power, the corresponding effluent temperatures being 25+/-1, 30+/-1, 35+/-1, and 45+/-1 degrees C, respectively.  相似文献   

20.
Due to the extensive use of electromagnetic fields in everyday life, more information is required for the detection of mechanisms of interaction and the possible side effects of electromagnetic radiation on the structure and function of the organism.In this paper, we study the effects of low-power microwaves (2.45 GHz) on the membrane fluidity of rod photoreceptor cells. The retina is expected to be very sensitive to microwave irradiation due to the polar character of the photoreceptor cells [Biochim. Biophys. Acta 1273 (1995) 217] as well as to its high water content [Stud. Biophys. 81 (1981) 39].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号