首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated sulfo-cation membrane (MF-4SK) prepared by ion-exchange method were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK exhibit superparamagnetic properties above the blocking temperature (TB), which varies from ∼80 to ∼300 K depending on the cobalt concentration at 100 Oe applied field. The average particle radius of 3.8 nm inferred from Langevin function fit for the concentration of 7.8×1019 cobalt atoms per 1 g of polymer film is in good agreement with TEM observation. This experimental evidence suggests that cobalt nanoparticles in the polymer film obey a single-domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.  相似文献   

2.
The transport and capture of therapeutic magnetic nanoparticles in human microvasculature is studied numerically. The nanoparticles are injected into a vascular system upstream from malignant tissue, and are captured at the tumour site with the aid of a local applied magnetic field positioned outside the body. Taking into account the dominant magnetic and fluidic forces on the particles, our study shows that the nanoparticles can be directed to and concentrated at the desired zone that is within a few centimetres from the surface of the body. In addition, influence of the particles size, average blood flow velocity and the diameter of the blood vessel on the captured efficiency are parametrically analysed.  相似文献   

3.
TiO2 nanowires were grown on titanium foil by an alkali hydrothermal growth method. The as-synthesized nanowires are structurally uniform with diameters of 50-100 nm and lengths of up to a few micrometers. The as-prepared TiO2 nanowires were coated with Ag nanoparticles by reducing AgNO3 in solution. The experimental results indicate that the Ag nanoparticles can aggregate together on the surfaces of TiO2 nanowires by interconnection between nanoparticles. The degree of aggregation of Ag nanostructures can be controlled by changing the concentrations of Ag nanoparticles. The as-prepared nanostructures exhibit a wide optical absorption from 387 to 580 nm that can be easily tuned by controlling the degree of aggregation of Ag nanostructures. The results reveal that optical properties of the Ag-coated TiO2 nanowires can be enhanced by plasmon coupling of Ag nanoparticles. The as-prepared nanostructures may find potential applications in the field of solar cells.  相似文献   

4.
The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium.  相似文献   

5.
Fe-doped Au nanoparticles are ideal for biological applications over magnetic oxides due to their conjugation chemistry, optical properties, and surface chemistry. We present an AC magnetic field heating study of 8 nm Fe-doped Au nanoparticles which exhibit magnetic behavior. Magnetic heating experiments were performed on stable aqueous solutions of the nanoparticles at room temperature. The nanoparticles exhibit magnetic field heating, with a specific absorption rate (SAR) of 1.84 W/g at 40 MHz and H=100 A/m. The frequency dependence of the heating follows general trends predicted by power loss equations and is similar to traditional materials.  相似文献   

6.
Based on the spin-phonon model we analyze the influence of surface and size effects on the phonon properties of ferromagnetic nanoparticles. A Green's function technique in real space enables us to calculate the renormalized phonon energy and its damping depending on the temperature and the anharmonic spin-phonon interaction constants. With decreasing particle size the phonon energy can decrease or increase for different surface spin-phonon interaction constants, whereas the damping increases always. The influence of an external magnetic field is discussed, too. The theoretical results are in reasonable accordance to experimental data.  相似文献   

7.
We studied the effects of the surrounding liquid environment on the size and optical properties of silver nanoparticles prepared by laser ablation by a pulsed Nd:YAG laser operated at 1064 nm. The silver targets used were kept in acetone, water and ethanol. TEM observations and optical extinction were employed for characterization of particle size, shape and optical properties, respectively. Nano silver in acetone showed a narrow size distribution with a mean size of 5 nm and the colloidal solution was stable. In deionised water a rather narrow size distribution with a mean size of 13 nm was observed and nanoparticles were precipitated slowly after about two weeks. In ethanol, a broadening in size distribution and optical extinction spectra was observed. Silver nanoparticles in ethanol with a mean size of 22 nm were completely precipitated after 48 h. In acetone, deionised water and ethanol, the wavelengths of maximum optical extinction are 399, 405 and 411 nm respectively, which is attributed to increasing the size of the nanoparticles. Growth, aggregation and precipitation mechanisms were related to the dipole moment of the surrounding molecules in order to clarify the difference in size, optical properties and stability of the nanoparticles. PACS 79.20.Ds; 81.07.-b; 61.46.+w  相似文献   

8.
Magnetic nanoparticles of CoFe2O4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe2O4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder.  相似文献   

9.
本文运用Lattice-Boltzmann(LB)方法建立了宏观静止磁流体模型,提出磁性聚集体概念,充分考虑了磁性颗粒受到的各种内力与外力包括重力、布朗力、vanderWaals相互作用及静磁相互作用,对无外加磁场及外加竖直均匀磁场时磁流体的结构进行了模拟,并分析了磁能与热能之比对磁流体系统中粒子分布形态的影响。模拟结果表明:无外加磁场时磁流体结构易失去稳定性,外加均匀磁场时磁流体粒子沿外磁场方向排列,随着磁热能比例的增大,外磁场对粒子分布的影响逐渐明显。  相似文献   

10.
磁共振热疗(magnetic resonance hyperthermia)是近年来新兴的一种纳米医学治疗方法,由磁共振的硬件架构产生特定交变磁场,有效地加热磁性纳米粒子,以直接或间接地杀死癌细胞,体现诊疗一体化。提高磁性纳米粒子的加热效率是当前磁共振热疗领域亟待解决的难题之一。磁性纳米粒子的加热效率不仅与粒子本身的大小、性质以及尺寸分布有关,还和聚集状态有关。该研究利用3D Metropolis蒙特卡罗模拟方法,模拟了不同温度下磁性纳米粒子的磁共振热动力学行为及其团聚与分离现象;并通过修正过的郎之万方程,建立了相变临界温度与外加磁场频率的函数关系。模拟结果显示,磁性纳米粒子悬浮液中多聚体的相对含量随着温度的升高而降低,达到临界温度后,多聚体完全分离成单体;而提高交变磁场频率可以显著降低临界温度,且存在临界频率,高于此临界频率后临界温度不再受外加磁场频率影响,达到稳定。因而在临界频率下预热磁性纳米粒子悬浮液,使得多聚体分离成单体,可优化磁性纳米粒子的热疗效率。  相似文献   

11.
When a magnetic fluid is subjected to a magnetic field, a part of the magnetic particles in the fluid agglomerates to form chains. Thus, the ferrofluid becomes optically anisotropic. In this work we describe optically observed patterns in some magnetic fluid films in applied parallel magnetic fields and optical effects of these, especially the optical transmittance. The most interesting experimental observation is that concerning the time dependence of relative transmittivity . For kerosene base ferrofluids relax rapidly at coupling and decoupling magnetic field, but for a transformer-oil magnetic fluid the relaxation times can attain (5–10) minutes, depending on the intensity of applied magnetic field.  相似文献   

12.
Mechanism of structure formation in bidispersed colloids is important for its physical and optical properties. It is microscopically observed that the mechanism of chain formation in magnetic nanofluid based magnetorheological (MR) fluid is quite different from that in the conventional MR fluid. Under the application of magnetic field the magnetic nanoparticles are filled inside the structural microcavities formed due to the association of large magnetic particles, and some of the magnetic nanoparticles are attached at the end of the chains formed by the large particles. The dipolar energy of the large particles in a magnetic nanofluid matrix becomes effective magnetic permeability (μeff) times smaller than that of the neutral medium. Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 μm) restricts the aggregation of large particles, which causes the field induced phase separation in MR fluids. Hence, nanofluid based MR fluids are more stable than conventional MR fluids, which subsequently increase their application potentiality.  相似文献   

13.
Ultrasound spectroscopy has been used to investigate the effect of magnetic field on particle (cluster) size distribution in ionic ferrofluid. The method applied is non-destructive, fast and sensitive to structural changes of a suspension as it is based on measurements of ultrasonic attenuation. Changes in the ultrasound attenuation induced by an external magnetic field have been measured for different frequencies of the acoustic wave. According to the Harker-Temple theory, the aggregation process has been analysed on the basis of the cluster size distribution determined for different magnetic field intensities.  相似文献   

14.
The targeting of ferrofluids composed of 20 nm magnetic particles was studied through simulation and animal experiment. The results showed that some magnetic particles were concentrated in the target area depending on the applied magnetic field. Through theoretical analysis, the retention of the magnetic nanoparticles in a target area is due to large magnetic liquid beads formed by the magnetic field.  相似文献   

15.
In this work we determine conditions to produce cell samples for imaging with detection of the modification of the magnetic field by maghemite (Fe2O3) nanoparticles acting as a high sensitivity magnetic bio-sensor based on the giant magneto-impedance (GMI) effect. Mat Ly Lu cells are grown for 24 h with various maghemite nanoparticles concentrations (from 0 to 6 mg/ml). The percentage of viable cells is determined by counting labeled cells with trypan blue under an optical microscope. The quantity of nanoparticles internalized into the cells is evaluated by X-ray fluorescence analysis and expressed in iron moles per cell. The GMI bio-sensor was tested with the various samples. We observed that the best sensitivity of the GMI bio-sensor was obtained at a frequency of 1 MHz. To confirm these results in the presence of cell samples, four measurement frequencies were pre-selected (from 1 to 100 MHz) and tested. Cell growth conditions compatible with an acceptable percentage of cell viability for various concentrations of nanoparticles were also determined. These experiments allow us to conclude that cell growth with 0.1 mg/ml of nanoparticles for 24 h shows modifications of the magnetic field detectable optimally at 1 MHz frequency.  相似文献   

16.
The images of magnetic and nonmagnetic nanoparticles obtained by scanning near-field microscopy in the photon collection mode are numerically simulated. A theoretical approach that uses tensor electrodynamic Green’s functions to find the optical near field in a given observation scheme is considered. Typicalimages of nanoparticles with various shapes are obtained by numerical simulation. Subject to boundary conditions, the plane of polarization is shown to change at topographic features (edges and angles) of objects studied. This makes the observation of the magnetic structure of a nanoparticle with a magnetooptic method difficult. The near-field study of the magnetization distribution in homogeneous thin films appears to be more effective, since the rotation of plane of polarization is associated primarily with the magnetic properties of the sample in this case.  相似文献   

17.
The magnetic, electrical and optical properties of nanoparticle systems often depend on the size and size distribution of nanoparticles. In order to optimize those properties of nanoparticle-assembled materials, only varying the mean size of nanoparticles was not enough, and narrowing the size distribution was also of immense importance. In this study, uniform-sized Fe nanoparticles with different diameters were prepared using a magnetron sputtering combined with inert gas condensation technique. The size and morphology of nanoparticles were observed by transmission electron microscopy (TEM). The statistic results revealed that the size of Fe nanoparticles increased with increasing the flow rate of Ar gas, but a reverse trend was observed when increasing the flow rate of He gas. By adjusting the flow rate of Ar and He gases, uniform-sized Fe nanoparticles with diameter ranging from 6 to 13?nm were obtained. Moreover, the size effects on the electrical and magnetic properties of Fe nanoparticle-assembled films with thickness of about 500?nm were also investigated. The magnetic properties showed that the coercivity increased with increasing the nanoparticle size. The in-situ resistance measurement results of Fe nanoparticle assembled-films also showed a size-dependent behavior.  相似文献   

18.
In this paper, we investigate the magnetic properties of aqueous suspensions of extremely bimodal magnetite particles, including micro- (size ∼1450 nm) and nano-(size ∼9 nm) units. It is found that the addition of increasing concentrations of small particles increases the saturation magnetization, the coercive field, and the low-field susceptibility. The results are explained considering that the nano-magnetite used has a moderately wide size distribution, that embraces both the range of superparamagnetism (the lowest size interval) and of finite coercivity, all being single domain. In addition, the formation of a cloud of small particles surrounding the larger ones favors the chain formation by dipolar magnetic aggregation. It is concluded that the admixture of even small amounts of nanoparticles offers an excellent tool for the control of the magnetic properties of magnetite suspensions.  相似文献   

19.
While a suitable magnetic field is applied to a ferrofluids film, magnetic nanoparticles in the film would form chain-like structure. Because of the action of magnetic convergent force (MCF) and magnetic divergent force (MDF), the chains will move coordinately towards to the axis of the field, then do apart from the center. From geometric shadowing effect, variation in the intensity of light transmitted through ferrofluids film is in relation to the coordinate motion of the chains. And a radiate synchromotion of the chain groups is constructed equivalently for describing the relation between transmitted light's intensity varying and chains moving. From the motion equation of one chain group, the relation is illustrated qualitatively by computer simulation. The experimental results show that the field-induced variation of light transmitted through ferrofluids film is a nonlinear relaxation process with intrinsic noise, and are in agreement with the behavior simulated by using the model of coordinated chains motion (MCCM).  相似文献   

20.
金属纳米颗粒LSPR光纤生物传感DDA方法研究   总被引:1,自引:0,他引:1  
研究了金属纳米颗粒的局部表面等离子体共振(LSPR)行为,并讨论了其在光纤生物传感领域的应用.采用离散偶极近似(DDA)的方法,从理论上分析了金属纳米颗粒的尺寸、形状对其传感灵敏度的影响.计算结果显示,金属纳米颗粒的等离子共振吸收峰同时受到颗粒尺寸和形状的影响,但形状对其传感灵敏度的影响最为明显,计算结果与实验数据能较好地吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号