首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cartesian products of complete graphs are known as Hamming graphs. Using embeddings into Cartesian products of quotient graphs we characterize subgraphs, induced subgraphs, and isometric subgraphs of Hamming graphs. For instance, a graph G is an induced subgraph of a Hamming graph if and only if there exists a labeling of E(G) fulfilling the following two conditions: (i) edges of a triangle receive the same label; (ii) for any vertices u and v at distance at least two, there exist two labels which both appear on any induced u, υ‐path. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 302–312, 2005  相似文献   

2.
Given any family of valid inequalities for the asymmetric traveling salesman polytopeP(G) defined on the complete digraphG, we show that all members of are facet defining if the primitive members of (usually a small subclass) are. Based on this result we then introduce a general procedure for identifying new classes of facet inducing inequalities forP(G) by lifting inequalities that are facet inducing forP(G), whereG is some induced subgraph ofG. Unlike traditional lifting, where the lifted coefficients are calculated one by one and their value depends on the lifting sequence, our lifting procedure replaces nodes ofG with cliques ofG and uses closed form expressions for calculating the coefficients of the new arcs, which are sequence-independent. We also introduce a new class of facet inducing inequalities, the class of SD (source-destination) inequalities, which subsumes as special cases most known families of facet defining inequalities.Research supported by Grant DDM-8901495 of the National Science Foundation and Contract N00014-85-K-0198 of the U.S. Office of Naval Research.Research supported by M.U.R.S.T., Italy.  相似文献   

3.
A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(G) denote the maximum number of vertices in a trivial subgraph of G. Motivated by an open problem of Erd?s and McKay we show that every graph G on n vertices for which q(G)≤ C log n contains an induced subgraph with exactly y edges, for every y between 0 and nδ (C). Our methods enable us also to show that under much weaker assumption, i.e., q(G)n/14, G still must contain an induced subgraph with exactly y edges, for every y between 0 and . © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 239–251, 2003  相似文献   

4.
A group-labeled graph is a graph whose vertices and edges have been assigned labels from some abelian group. The weight of a subgraph of a group-labeled graph is the sum of the labels of the vertices and edges in the subgraph. A group-labeled graph is said to be balanced if the weight of every cycle in the graph is zero. We give a characterization of balanced group-labeled graphs that generalizes the known characterizations of balanced signed graphs and consistent marked graphs. We count the number of distinct balanced labellings of a graph by a finite abelian group Γ and show that this number depends only on the order of Γ and not its structure. We show that all balanced labellings of a graph can be obtained from the all-zero labeling using simple operations. Finally, we give a new constructive characterization of consistent marked graphs and markable graphs, that is, graphs that have a consistent marking with at least one negative vertex.  相似文献   

5.
The edge-clique graphK(G) of a graphG is that graph whose vertices correspond to the edges ofG and where two vertices ofK(G) are adjacent whenever the corresponding edges ofG belong to a common clique. It is shown that every edge-clique graph is a clique graph, and that ifG is either an interval graph or a line graph, then so too isK(G). An algorithm is provided for determining whether a graph is an edge-clique graph. A new graph called the STP graph is introduced and a relationship involving this graph, the edge-clique graph, and the line graph is presented. The STP graphs are also characterized.Research supported in part by Office of Naval Research Contract N00014-88-K-0018.Research supported in part by Office of Naval Research Contract N00014-88-K-0163.  相似文献   

6.
Colorings and orientations of graphs   总被引:10,自引:0,他引:10  
N. Alon  M. Tarsi 《Combinatorica》1992,12(2):125-134
Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: IfG is a directed graph with maximum outdegreed, and if the number of Eulerian subgraphs ofG with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any assignment of a setS(v) ofd+1 colors for each vertexv ofG there is a legal vertex-coloring ofG assigning to each vertexv a color fromS(v).Research supported in part by a United States-Israel BSF Grant and by a Bergmann Memorial Grant.  相似文献   

7.
LetG be a fixed graph and letX G be the number of copies ofG contained in the random graphG(n, p). We prove exponential bounds on the upper tail ofX G which are best possible up to a logarithmic factor in the exponent. Our argument relies on an extension of Alon’s result about the maximum number of copies ofG in a graph with a given number of edges. Similar bounds are proved for the random graphG(n, M) too. Research of the second author supported by KBN grant 2 P03A 027 22. Research of the third author supported by KBN grant 2 P03A 15 23.  相似文献   

8.
This paper studies the problem of finding a two-edge connected spanning subgraph of minimum weight. This problem is closely related to the widely studied traveling salesman problem and has applications to the design of reliable communication and transportation networks. We discuss the polytope associated with the solutions to this problem. We show that when the graph is series-parallel, the polytope is completely described by the trivial constraints and the so-called cut constraints. We also give some classes of facet defining inequalities of this polytope when the graph is general.Research supported in part by the Natural Sciences and Engineering Research Council of Canada and CP Rail and the German Research Association (Deutsche Forschungsgemeinschaft SFR 303).  相似文献   

9.
In [3] we presented a linear system which definesP(G), the convex hull of incidence vectors of matching forests of a mixed graphG. However, many of the inequalities of this system may be redundant. Here we describe the dimension of the facets ofP(G) obtained by setting one inequality of the defining system forP(G) to an equation. This leads to a presentation of a minimal defining linear system forP(G), i.e., to a presentation of the facets ofP(G). This generalizes earlier characterizations of facets of 1-matching polyhedra and of branching polyhedra.Research partially supported by a N.R.C. Canada Postdoctorate Fellowship.  相似文献   

10.
An induced subgraph S of a graph G is called a derived subgraph of G if S contains no isolated vertices. An edge e of G is said to be residual if e occurs in more than half of the derived subgraphs of G. We introduce the conjecture: Every non-empty graph contains a non-residual edge. This conjecture is implied by, but weaker than, the union-closed sets conjecture. We prove that a graph G of order n satisfies this conjecture whenever G satisfies any one of the conditions: δ(G) ≤ 2, log2 n ≤ δ(G), n ≤ 10, or the girth of G is at least 6. Finally, we show that the union-closed sets conjecture, in its full generality, is equivalent to a similar conjecture about hypergraphs. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 155–163, 1997  相似文献   

11.
Given any family of graphsP, theP chromatic number p (G) of a graphG is the smallest number of classes into whichV(G) can be partitioned such that each class induces a subgraph inP. We study this for hereditary familiesP of two broad types: the graphs containing no subgraph of a fixed graphH, and the graphs that are disjoint unions of subgraphs ofH. We generalize results on ordinary chromatic number and we computeP chromatic number for special choices ofP on special classes of graphs.Research supported in part by ONR Grant N00014-85K0570 and by a grant from the University of Illinois Research Board.  相似文献   

12.
We prove that for any cardinalτ and for any finite graphH there is a graphG such that for any coloring of the pairs of vertices ofG withτ colors there is always a copy ofH which is an induced subgraph ofG so that both the edges of the copy and the edges of the complement of the copy are monochromatic. Research supported by Hungarian National Science Foundation OTKA grant 1805.  相似文献   

13.
An infinite graph G is calledstrongly perfect if each induced subgraph ofG has a coloring (C i :iI) and a clique meeting each colorC i . A conjecture of the first author and V. Korman is that a perfect graph with no infinite independent set is strongly perfect. We prove the conjecture for chordal graphs and for their complements. The research was begun at the Sonderforschungsbereich 343 at Bielefeld University and supported by the Fund for the Promotion of Research at the Technion.  相似文献   

14.
A digraph D is connected if the underlying undirected graph of D is connected. A subgraph H of an acyclic digraph D is convex if there is no directed path between vertices of H which contains an arc not in H. We find the minimum and maximum possible number of connected convex subgraphs in a connected acyclic digraph of order n. Connected convex subgraphs of connected acyclic digraphs are of interest in the area of modern embedded processors technology.  相似文献   

15.
The traditional vertex packing problem defined on an undirected graph identifies the largest weighted independent set of nodes, that is, a set of nodes whose induced subgraph contains no edges. In this paper, we examine a generalized vertex packing problem (GVP-k) in which k ``violations' to the independent set restriction are permitted, whereby k edges may exist within the subgraph induced by the chosen set of nodes. A particular context in which such problems arise is in the national airspace planning model of Sherali, Smith, and Trani (2000), where a set of flight-plans need to be composed for various flights subject to conflict, workload, and equity considerations. The GVP-k structure arises in modeling the air-traffic control sector workload restrictions, which stipulate that for each sector and during each discretized time-slot, the number of aircraft conflicts that would need to be resolved should not exceed k, for some k≥1. We derive several classes of facetial valid inequalities for GVP-k for certain specially structured subgraphs, identifying polynomial-sized convex hull representations for some of these cases. Related constraint generation routines are also developed, and some computational results are provided to demonstrate the efficacy of utilizing the proposed valid inequalities in solving GVP-k for different values of k.  相似文献   

16.
We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

17.
The MAXIMUM PLANAR SUBGRAPH problem—given a graphG, find a largest planar subgraph ofG—has applications in circuit layout, facility layout, and graph drawing. No previous polynomial-time approximation algorithm for this NP-Complete problem was known to achieve a performance ratio larger than 1/3, which is achieved simply by producing a spanning tree ofG. We present the first approximation algorithm for MAXIMUM PLANAR SUBGRAPH with higher performance ratio (4/9 instead of 1/3). We also apply our algorithm to find large outerplanar subgraphs. Last, we show that both MAXIMUM PLANAR SUBGRAPH and its complement, the problem of removing as few edges as possible to leave a planar subgraph, are Max SNP-Hard.  相似文献   

18.
A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color is equal to the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The list of minimal forbidden induced subgraphs for the class of coordinated graphs is not known. In this paper, we present a partial result in this direction, that is, we characterize coordinated graphs by minimal forbidden induced subgraphs when the graph is either a line graph, or the complement of a forest. F. Bonomo, F. Soulignac, and G. Sueiro’s research partially supported by UBACyT Grant X184 (Argentina), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil). The research of G. Durán is partially supported by FONDECyT Grant 1080286 and Millennium Science Institute “Complex Engineering Systems” (Chile), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil).  相似文献   

19.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

20.
Matching forests generalize branchings in a directed graph and matchings in an undirected graph. We present an efficient algorithm, the PMF Algorithm, for the problem: given a mixed graphG and a real weight on each of its edges, find a perfect matching forest of maximum weight-sum. The PMF Algorithm proves the sufficiency of a linear system which definesP = (G) andP(G), the convex hull of incidence vectors of perfect matching forests and matching forests respectively ofG. The algorithm also provides a generalization of Tutte's theorem on the existence of perfect matchings in an undirected graph.Research partially supported by a N.R.C. of Canada Postdoctorate Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号