首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag/WO3纳米复合膜的制备及其电致变色性质和器件的研究   总被引:1,自引:0,他引:1  
庞月红  黎小宇  赵婷  施国跃  金利通 《化学学报》2008,66(21):2360-2364
通过真空镀膜方法制备的纳米Ag薄膜均匀致密, 表面光滑. 然后通过电化学方法在Ag纳米薄膜上沉积一层三氧化钨(WO3), 制备纳米Ag/WO3复合膜. 并在此基础上构筑五层式玻璃/ITO/纳米Ag-WO3复合膜/固态电解质/聚(3-甲基噻吩)/ITO/玻璃电致变色器件. 实验结果表明, 与传统的WO3膜相比, 纳米Ag/WO3复合膜具有更好的电化学活性、更高的对比度、更短的响应时间, 以及更好的稳定性. 由该复合膜组装的电致变色器件工艺简单, 电致变色性能良好.  相似文献   

2.
The TiO2, MoO3, PEO doped four-member tungstic acid sols were prepared for the first time. The stability of different doped content sols were investigated and optimized with rotational viscometer. The four-member doped tungstic acid sol was very stable which could be stored more than two months at room temperature. The WO3 electrochromic film prepared from this doped four-member tungstic acid sol had excellent performance and longevity of service.  相似文献   

3.
以钨粉和过氧化氢溶液为原料, 采用溶胶凝胶法制备了WO3溶胶, 并结合提拉镀膜法, 分别在普通玻璃载玻片和抛光硅片上制备了掺钯气致变色WO3纳米结构薄膜; 并分别在50, 150, 250, 350和450 ℃的空气氛围中对薄膜进行了热处理. 采用IR、双椭圆偏振光谱仪、AFM和XRD分析了薄膜的性质和微观结构, 观察了薄膜的表面形貌, 根据所得数据讨论了不同热处理温度对薄膜的结构和气致变色性能的影响.  相似文献   

4.
The light-to-electricity conversion process of the TiO2 nanostructured electrode sensitized by a dye was investigated using the photoelectrochemical method in this paper. At the same time, the WO3 thin film was electrodeposited on conducting glass. The results showed that the dye-sensitized nanoporous TiO2 film has the properties of energy conversion, along with good electrochromic properties of electrodeposited MoO3 thin film. A self-powered smart window was achieved by combining a dye-sensitized nanoporous TiO2 film as the photovoltaic layer and an electrodeposited WO3 film as the electrochromic layer. This window changed from being almost transparent to blue spontaneously under illumination, and thus could modulate light transmittance.  相似文献   

5.
Li-Mn/WO_(3)/TiO_(2)催化剂具有良好的低温OCM催化性能,采用浸渍法制备Li-Mn/WO_(3)/TiO_(2)催化剂,并详细考察WO_(3)对催化剂物理化学性质及催化性能的影响.利用X射线衍射(XRD)、CO_(2)程序升温脱附(CO_(2)-TPD)、O_(2)程序升温脱附(O_(2)-TPD)、H_(2)程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等表征技术对催化剂进行了研究,发现WO_(3)的添加提高了C_(2)选择性,并有效抑制了深度氧化.XRD与CO_(2)-TPD结果表明,WO_(3)的添加不仅有利于金红石型TiO_(2)的形成而且能够中和催化剂表面的强碱位,从而抑制了深度氧化反应.O_(2)-TPD和H_(2)-TPR结果表明,WO_(3)的添加降低了晶格氧(O^(2-))移动性,进而提高了反应的C_(2)选择性.此外,WO_(3)的添加促使了低温氧化偶联活性物种MnTiO_(3)的形成并提高了活性物种的分散性,因此提高了催化剂甲烷氧化偶联的反应活性和选择性.所有Li-Mn/x%WO_(3)/TiO_(2)催化剂中,Li-Mn/5%WO_(3)/TiO_(2)催化剂显示出最佳的OCM反应性能.在750℃,CH_(4)∶O_(2)∶N_(2)=10∶4∶5,GHSV=2280 mL·g^(-1)·h^(-1)条件下,最高的C_(2)产物收率可达16.3%.  相似文献   

6.
Nickel oxide thin films, which are well known anodic coloration materials that are used in electrochromic devices, were prepared by a sol–gel method, and their electrochemical and electrochromic properties were investigated. The sol was prepared from Ni(OH)2 powder with an average size of 7 nm, in a mixture of ethylene glycol and absolute ethanol. The films were coated on an ITO substrate using the powder, dispersed in the solution. When additive materials, acetyl acetone and glycerol, were added to the sol its hardness and adhesion properties were improved. The optimized thin film formed an amorphous, porous structure, and showed a large current density during continuous potential and pulse potential cycling. The film also was transparent and had a high coloration efficiency (33.5 cm2/C) and a rapid response time (1.0–2.5 s) during the coloring/bleaching process.  相似文献   

7.
用循环伏安法、交流阻抗技术和光电流谱技术研究了阳极氧化膜WO_3电显色和自褪色过程的机理,电显色时,氢原子先在WO_3表面吸附,其后从WO_3表面向晶格内部传输,电褪色时,H_xWO_3晶格中填隙H原子先传输到W表面脱附生成填隙H~+,然后再在电场驱动下在膜中迁移,自褪色过程可能是由膜中所含的少量水和部分填隙H原子的羟基化作用引起的。  相似文献   

8.
Photocatalytic degradation of organic substrates over WO(3) in an aerated aqueous suspension is very slow due to the difficulty of O(2) reduction by the conduction band electron on WO(3). In this work, we report on H(2)O(2) as an electron scavenger significantly accelerating the photodegradation of phenol and azo-dye X3B in water under UV or visible light. More importantly, an iron-containing WO(3) (FeW) synthesized through thermal decomposition of a ferrotungstenic acid displayed a much higher activity than pure WO(3) (HW) prepared in parallel. As the sintering temperature increased, both FeW and HW showed an exponential increase in activity. The maximum rate constant of phenol degradation obtained with FeW at 400 °C was about 2 times larger than that with HW at 600 °C. Sample characterization with electron paramagnetic resonance (EPR) spectroscopy and other techniques revealed that ferric species (0.3 wt % Fe(2)O(3)) were mainly present as clusters on the oxide surface at 120 °C and then they diffused toward the lattice sites of WO(3) at high temperature, which was detrimental to the photocatalytic reaction. 5,5-Dimethyl-1-pyrroline N-oxide spin-trapping EPR showed that the production of hydroxyl radicals was greatly enhanced upon the addition of H(2)O(2), the trend of which among different catalysts was the same as that of the rate of phenol degradation. The catalysts after excitation at 350 nm displayed a blue emission centered at 469 nm, the intensity of which varied with the catalyst activity nearly as expected. A possible mechanism for the improved photoactivity of WO(3) is proposed involving the electron transfer from WO(3) to Fe(2)O(3) and the reaction of the reduced oxide with H(2)O(2) to generate hydroxyl radicals.  相似文献   

9.
A [Ru(bpy)(3)](2+) (bpy=2,2'-bipyridine)-doped WO(3) film was prepared as a base layer on a substrate by cathodic electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and poly(sodium 4-styrenesulfonate) (PSS). A Prussian blue (PB; Fe(II)-Fe(III)) film was cathodically electrodeposited on the [Ru(bpy)(3)](2+)-doped WO(3) film or neat WO(3) film from an aqueous Berlin brown (BB; Fe(III)-Fe(III)) colloid solution to yield a [Ru(bpy)(3)](2+)-doped WO(3)/PB bilayer film or WO(3)/PB bilayer film. For the spectrocyclic voltammogram (SCV) of the WO(3)/PB film, a redox response of Prussian white (PW; Fe(II)-Fe(II))/PB was observed at 0.11 V, however, further oxidation of PB to BB was not allowed by the interfacial n-type Schottky barrier between the WO(3) and PB layers. For the [Ru(bpy)(3)](2+)-doped WO(3)/PB film, any electrochemical response assigned to the redox of PB was not observed in the cyclic voltammogram, however, the in situ absorption spectral change recorded simultaneously showed the significant redox reactions based on PB. The SCV revealed that PW on the [Ru(bpy)(3)](2+)-doped WO(3) film is completely oxidized to PB by a geared reaction of Ru(II)/Ru(III) at 1.05 V, and that 32 % of PB formed is further oxidized to BB by the same geared reaction in the potential scan to 1.5 V. PB was completely re-reduced to PW by a geared reaction of H(x)WO(3)/WO(3) at -0.5 V in the reductive potential scan. These geared electrochemical reactions produced an electrochromic hysteresis performance of the PB film layered on the [Ru(bpy)(3)](2+)-doped WO(3) film.  相似文献   

10.
空心介孔WO3球的制备及光催化性能   总被引:1,自引:1,他引:0  
采用喷雾干燥法制备中空偏钨酸铵球,通过调整热处理温度制备空心介孔WO3球。结果表明:具有Keggin结构的[H2W12O40]6-金属簇的破坏温度区间为417~439℃;在热处理温度为500、550℃,仍有少量的铵根和结合水没有分解,除了WO3外,还存在(NH4)0.06WO3(H2O)0.11;当热处理温度在600℃以上时,偏钨酸铵完全分解为WO3;热处理温度为700℃,保温时间为2h,得到空心介孔WO3球。其形成机理为:空心的偏钨酸铵球,在热处理过程中由于各亚晶的位向不一致,各亚晶沿着[002]晶向择优生长,亚晶形成狭长颗粒,从而在空心球表面形成了介孔;但当热处理温度为800℃,保温时间为2 h,晶粒与晶粒之间通过合并而长大,孔道也随之消失;空心介孔WO3球具有良好的光催化效果,500 W高压汞灯照射150 min甲基蓝的降解率为65.9%。  相似文献   

11.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C3N4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C3N4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C3N4光催化效率.在过去几年中,TiO2,Bi2WO6,WO3,Bi2MoO6,Ag3PO4和ZnO已经被成功证实可以与g-C3N4耦合而构造Z型光催化剂体系.其中,WO3/g-C3N4光催化剂体系,具有可见光活性的WO3导带中的光生电子和g-C3N4价带中的光生空穴容易实现Z型复合,从而保留了WO3的强氧化能力和g-C3N4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C3N4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)2,WS2和MoS2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)x助催化剂修饰g-C3N4/WO3耦合形成的Z型体系,开发出廉价高效的WO3/g-C3N4/Ni(OH)x三元产氢光催化体系.在该三元体系中,Ni(OH)x和WO3分别用于促进g-C3N4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C3N4的光生电子在Ni(OH)x富集并应用于光催化产氢,而高能的WO3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO3纳米棒/g-C3N4,并采用原位光沉积方法将Ni(OH)x纳米颗粒负载到WO3/g-C3N4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO3为有缺陷的正交晶系的晶体,直径为20–40纳米棒且均匀嵌入在g-C3N4纳米片上;Ni(OH)x为Ni(OH)2与Ni的混合物,其Ni(OH)2与Ni的摩尔比为97.4 : 2.6,Ni(OH)x粒径为20–50 nm且均匀分散在g-C3N4纳米片上,WO3/g-C3N4/Ni(OH)x催化剂界面之间结合牢固,其中WO3和Ni(OH)x均匀分布在g-C3N4上.紫外-可见漫反射表征结果表明,随着缺陷WO3的负载量增加,复合体系的吸收边与g-C3N4相比产生明显的红移,而加入Ni(OH)x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO3和Ni(OH)x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO3和Ni(OH)x能降低g-C3N4的析氢过电位,从而提高光催化剂表面的产氢动力学.?O2?和?OH 电子自旋共振谱表明成功形成了WO3/g-C3N4 耦合Z 型体系.光催化分解水产氢的性能测试表明,20%WO3/g-C3N4/4.8%Ni(OH)x产氢效率最高(576 μmol/(g?h)),分别是g-C3N4/4.8%Ni(OH)x,20%WO3/g-C3N4和纯g-C3N4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)x助催化剂修饰和g-C3N4/WO3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

12.
Oxidation resistance of metal at high temperature can be improved by an environmentally friendly solution deposition approach. Stable precursor solution with high oxide concentration, favorable viscosity and low surface tension was prepared using aluminum sec-butoxide (ASB) and polyvinylpyrrolidone (PVP) as starting raw materials. Alumina sol-gel films were deposited onto metal by spin-coating followed by heat treatment. When PVP was added according to an amount of 50 mg/mL into a sol with an ASB/H2O molar ratio of 1:35, the as-obtained sol exhibited favorable gelation time and viscosity. The surface tension of the alumina sol with PVP was examined to be lower by 32% than the sol (ASB:H2O = 1:100) without PVP. TG-DTA analyses show the densification of the alumina gel film with PVP was progressed within a wide temperature range from 200 to 650 °C. Crack-free Al2O3 film with a thickness up to 1.5 μm was successfully produced on metallic substrate by three spin-coating cycles. SEM and XRD analyses revealed the gel film transformed into compact α-Al2O3 material after calcined at 1,000 °C for 0.5 h. The weight gained by the samples during firing at 1,000 °C indicated that the Al2O3 coating film could reduce the rate of oxidation by ∼81%. The hardness of the Al2O3 film coated metal was higher by 260% than the uncoated metal that was calcined at 1,000 °C for 0.5 h. It was confirmed by adhesion test that both the alumina/PVP hybrid film and the as-produced α-Al2O3 coating film had strong adhesion.  相似文献   

13.
汪颖军  刘成双  罗洪君  李小辉 《应用化学》2010,27(10):1182-1187
采用溶胶凝胶法制备了TiO2-Al2O3复合载体,用分步浸渍法制备了NiO/WO3/TiO2-Al2O3催化剂。 在常压连续流动固定床反应器上考察了NiO/WO3/TiO2-Al2O3对正庚烷临氢异构化反应的催化性能。 研究了催化剂中WO3含量、Ni含量、焙烧温度和还原温度及催化反应温度对临氢异构化反应的影响。 采用XRD和BET方法对催化剂进行了表征。 结果表明,当w(WO3)=25%、w(Ni)=10%时,所制备的NiO/WO3/TiO2-Al2O3催化剂对正庚烷异构化反应的催化性能最好,活性可达15.50%,选择性可达84.06%。  相似文献   

14.
The design of improved materials for electrochromic applications now involves extensive use of novel composites, thus requiring an investigation of the mechanisms responsible for electrochromism in these structures. Using films of WO(3) and chitosan produced with the layer-by-layer (LBL) technique, we demonstrate that characteristics such as the number of electrochemical active sites (K), the molar absorption coefficient (epsilon), and the electrochromic efficiency (eta) can be obtained using the quadratic logistic equation (QLE). The complexation ability between chitosan and WO(3) allowed the growth of visually uniform multilayers of the composite, with the same amount of material adsorbed in each deposition cycle. By fitting the absorbance changes (DeltaA) resulting from the electronic intervalence transfer from W(V) to W(VI) sites in four-bilayer LBL films of WO(3)/chitosan and WO(3)/chitosan with ethanol in the precursor dispersion, K was estimated to be ca. 5.5 x 10(-8) mol cm(-2) and 3.6 x 10(-8) mol cm(-2), respectively. The molar absorption coefficient and electrochromic efficiency vary with the charge injected because of the saturation of W(V) sites and the dissipation and feedback effects implicit in the QLE associated with ion-network interactions, such as the proton trapping effect. The LBL film of WO(3)/chitosan showed a smaller molar absorption coefficient and electrochromic efficiency than that containing ethanol because of a greater proton trapping effect for the LBL film with no ethanol. This enhanced trapping effect was seen as a decrease in the electronic flux involved in intervalence transfer in electrochemical impedance spectroscopy experiments.  相似文献   

15.
用循环计时电量法、循环伏安法、电化学现场(in-situ)紫外可见反射光谱技术和光电流谱技术研究了溶剂和阳离子(H~+,Li~+)对阳极氧化膜WO_3电显色稳定性和过程的影响。从循环计时电量图可以测定表征膜稳定性的氢或锂的累积量和暂态周期数。实验发现W/WO_3/LiCLO_4乙腈溶液体系具有高的电显色稳定性。引起WO_3膜可逆电显色的H~+和Li~+离子的嵌-脱过程的界面电化学机理不同。着色态WO_3膜的色心是自由电子,其密度超过10~(21)/cm~3,生色机理是等离子体振荡。  相似文献   

16.
以Na2WO4.2H2O为主要原料,采用液相法(80℃)和离子交换-水热法(150℃)分别制备了六方WO3.0.33H2O和以正交相为主的混合晶型WO3.0.33H2O。通过对2种晶型WO3.0.33H2O材料进行X射线衍射(XRD)、场发射电子扫描显微镜(FE-SEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)和循环伏安测试,表征了产物的晶相和结构等。正交WO.30.33H2O结构中由于相邻钨氧八面体层的相互位移而形成空隙,六方WO3.0.33H2O结构中没有位移则形成孔道;正交WO3.0.33H2O具有比六方WO3.0.33H2O更短键长的W=O和更负的导带位置。紫外-可见透射光谱研究表明,六方WO.30.33H2O具有更明显的电致变色效应,可能是因为结构中的孔道使H+易扩散使六方WO.30.33H2O更易发生氧化还原反应。光催化性能研究表明,正交WO3.0.33H2O具有更负的导带位置,价带电子跃迁后易于向电子受体转移,抑制了电子和空穴的复合,使得混合晶型WO3.0.33H2O的紫外光光催化能力相对六方WO.30.33H2O更强。  相似文献   

17.
以室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐[BMIM]PF6为溶剂及支持电解质,通过电化学方法制备聚(3-己基噻吩)(PHexT)膜。采用循环伏安法和扫描电子显微镜,对膜的电化学性质及形貌结构进行表征。同时通过紫外可见光谱、计时电流、计时库仑以及计时吸收曲线等方法研究聚合物膜的光谱电化学和电致变色特性,并在此基础上制备PHexT膜的电致变色器件。实验结果表明,在离子液体中制备的PHexT膜光滑致密,掺杂态时为蓝色,脱掺杂时为桔红色,并且具有高的颜色对比度 (40%),较短的响应时间 (2.5 s) 和高的电致变色着色效率 (230cm2/C),该膜制成的固态电致变色器件具有很好的电致变色性能和长的循环寿命。  相似文献   

18.
通过磷钨酸H3PW12O40(HPW)和邻菲啰啉C12H8N2(Phen)的溶液反应,合成了杂多化合物(C12H8N2)2.5H3PW12O40((Phen)2.5HPW),以WO3空心微球为载体,负载杂多化合物(Phen)2.5HPW,制备了(Phen)2.5HPW/WO3复合空心微球.用等离子体原子发射光谱(ICP...  相似文献   

19.
A tungsten trioxide (WO(3))/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+); bpy=2,2'-bipyridine)/poly(sodium 4-styrenesulfonate) (PSS) hybrid film was prepared by electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and PSS. A binary solution of [Ru(bpy)(3)](2+) and PTA (30 vol % ethanol in water) gradually gave an orange precipitate, possibly caused by the electrostatic interaction between the cationic [Ru(bpy)(3)](2+) and the anionic PTA. The addition of PSS to the binary PTA/[Ru(bpy)(3)](2+) solution remarkably suppressed this precipitation and caused a stable, colloidal triad solution to form. The spectrophotometric measurements and lifetime analyses of the photoluminescence from the excited [Ru(bpy)(3)](2+) ion in the colloidal triad solution suggested that the [Ru(bpy)(3)](2+) ion is partially shielded from electrostatic interaction with anionic PTA by the anionic PSS polymer chain. The formation of the colloidal triad made the ternary [Ru(bpy)(3)](2+)/PTA/PSS solution much more redox active. Consequently, the rate of electrodeposition of WO(3) from PTA increased appreciably by the formation of the colloidal triad, and fast electrodeposition is required for the unique preparation of this hybrid film. The absorption spectrum of the [Ru(bpy)(3)](2+) ion in the film was close to its spectrum in water, but the photoexcited state of the [Ru(bpy)(3)](2+) ion was found to be quenched completely by the presence of WO(3) in the hybrid film. The cyclic voltammogram (CV) of the hybrid film suggested that the [Ru(bpy)(3)](2+) ion performs as it is adsorbed onto WO(3) during the electrochemical oxidation. An ohmic contact between the [Ru(bpy)(3)](2+) ion and the WO(3) surface could allow the electrochemical reaction of adsorbed [Ru(bpy)(3)](2+). The composition of the hybrid film, analyzed by electron probe microanalysis (EPMA), suggested that the positive charge of the [Ru(bpy)(3)](2+) ion could be neutralized by partially reduced WO(3)(-) ions, in addition to Cl(-) and PSS units, based on the charge balance in the film. The electrostatic interaction between the WO(3)(-) ion and the [Ru(bpy)(3)](2+) ion might be responsible for forming the electron transfer channel that causes the complete quenching of the photoexcited [Ru(bpy)(3)](2+) ion, as well as the formation of the ohmic contact between the [Ru(bpy)(3)](2+) ion and WO(3). A multicolor electrochromic performance of the WO(3)/[Ru(bpy)(3)](2+)/PSS hybrid film was observed, in which transmittances at 459 and 800 nm could be changed, either individually or at once, by the selection of a potential switch. Fast responses, of within a few seconds, to these potential switches were exhibited by the electrochromic hybrid film.  相似文献   

20.
Research on Chemical Intermediates - A series of WO3-modified TiO2 sols with various WO3 contents were synthesized by peroxo sol–gel method using H2O2 as the agent. The as-synthesized...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号