首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mesoporous silica gel Davidson 59 was thermally treated in vacuo, in the temperature range 20–1000°C. Effects of thermal treatment on the water contents, nitrogen surface areas, pore structure and heats of immersion in water were investigated and discussed. The temperatures selected were 20, 110, 200, 290, 380, 480, 510 and 1000°C. These temperatures were found to cover all the various textural changes resulting from the heat effect.It could be shown that the heats of immersion in water depend primarily on the water content of the sample and are proportional, at least qualitatively to the number of hydroxyl groups on the surface and their availability for interaction with liquid water. The interesting result obtained is that a second factors is involved, namely the pore structure of the adsorbent. A qualitative parallelism exists between the normalized heat of immersion per unit area, and the average pore radius. Apparently the packing of water molecules in narrow pores leads to a decrease in the heat of immersion due to repulsion between the permanent dipoles of the molecules. In narrower pores, the heat of immersion in water is smaller than in wide pores.  相似文献   

2.
When the anatase form of TiO2 was heated at a constant rate of 6°C/min to 450°C it crystallized from hydrated amorphous TiO2 gel at 170°C in pure water or at <150°C in NaOH solutions. The uptake of Na+ ions into crystallized anatase affected the reactions subsequent to this initial crystallization while only anatase crystals continued to grow with increasing temperature in pure water. Immediately after the nearly amorphous second stage at 325°C, conversion from colloidal anatase particles to square sheet-shaped bronze-type TiO2 crystals began at 350°C and was complete at 425°C in 0.5 M NaOH. This conversion was considered to proceed via crystallographic shear rather than via dissolution and precipitation since this also happened with thermal treatment to 700°C in air.  相似文献   

3.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

4.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

5.
Nanocrystalline rod shaped calcium doped cerium phosphate yellow-green pigment particles having an average length of ~100 nm and aspect ratio 10 even after calcination at 600 °C have been realized through an aqueous sol–gel process. The morphology, particle size and identification of the phase are determined by using different analytical tools such as transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), Fourier-transform IR (FTIR) and X-ray diffraction (XRD). Brunauer–Emmett–Teller (BET) nitrogen adsorption analysis showed the pigment particles are mesoporous texture having specific surface area 42 m2 g?1 and average pore size 153 Å. Thermogravimetric (TG) analysis is used to explain the thermal phase stability of the pigment. UV–Visible spectroscopy and colorimetric analysis are also done. The typical yellow-green color has been obtained even after heating to as low as 600 °C, which is 300 °C lesser than reported. Systematic study on synthesis and effect of temperature on color are presented.  相似文献   

6.
The Brazilian sugarcane industry shows a great amount of generated sludge which should be utilized adequately. Two sludge samples, aerobic and anaerobic, were collected. Both were evaluated by thermogravimetry and differential thermal analysis (DTA) as well as X-ray power diffraction. These compounds show variations of mass between 30 and 140 °C due to the dehydration stage. The DTA curves show that the compounds have an exothermic reaction between 450 and 550 °C, which indicates that this can be used as an energy source. Details concerning the kinetic parameters of the dehydration and thermal decomposition have also been described here. The kinetic study of these stages was evaluated in open crucibles under nitrogen atmosphere. The obtained data were evaluated with the isoconversional kinetic method. The results show that different activation energies were obtained for thermal decomposition.  相似文献   

7.
Zirconium hydroxide gel has been prepared by a novel aqueous gelation process by the controlled hydrolysis of zirconium oxychloride in the presence of sodium acetate. The gel thus formed has been subjected to thermal analysis: TG, DTG, and DSC. Thermal analysis shows that the gel is continuously dehydrated in the temperature range between room temperature and 500?°C. The total mass loss relative to the initial mass is about 44.1%. Thermal analysis shows that the decomposition takes place in three stages. The gel contains absorbed and coordinated water. In the second stage of dehydration, dehydration of the Zr(OH)4 gel also takes place along with the removal of the coordinated water. The DSC analysis coupled with TG and structural information, indicate that the exothermic processes between 349 and 460?°C can be attributed to the nucleation process of the formation of tetragonal zirconia, with phase transformation at 460?°C.  相似文献   

8.
Mesoporous TiO2 with a high specific surface area was prepared from titanium sulfate solution in a simple sol–gel route, where formamide was used as pH adjusting agent. TiO2 had a high resistance to phase transformation, and maintained monophasic anatase after calcinating at 600 °C. The highest specific surface area achieved on the prepared samples is 231.90 m2 g−1 after calcinating at 450 °C.  相似文献   

9.
The mineral reevesite and the cobalt substituted reevesite have been synthesised and studied by thermal analysis and X-ray diffraction. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. This increase in carbonate anion content is attributed to an increase in surface charge on the brucite like layers. The maximum temperature of the reevesite decomposition occurs for the unsubstituted reevesite at around 220 °C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.  相似文献   

10.
Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol?Cgel process were employed in the degradation of rhodamine at 10?mg?L?1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450?°C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K app) of 0.023?min?1. The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024?min?1 for 450, 500, 550 and 600?°C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017?min?1, which is similar to that of the commercial titania.  相似文献   

11.
Surface treatment of titanium (Ti) surface has been extensively studied to improve its properties for biomedical applications, including hydrophilicity, corrosion resistance, and tissue integration. In this present work, we present the effects of thermal oxidation as surface modification method on metallic titanium (Ti). The Ti foils were oxidized at 300°C, 400°C, 500°C, and 600°C under air atmosphere for 3 hours, which formed oxide layer on Ti surface. The physicochemical properties including surface chemistry, roughness, and thickness of the oxide layer were evaluated in order to investigate how these factors affected surface hydrophilicity, microhardness, and corrosion resistance properties of the Ti surface. The results revealed that surfaces of all oxidized samples were modified by formation of titanium dioxide layer, of which morphology, phase, and thickness were changed according to the oxidized temperatures. Increasing oxidation temperature led to the formation of thicker oxide layer and phase transformation of anatase to rutile. The presence of the oxide layer helped the improvement of corrosion resistance and microhardness. The most improvement in surface roughness was found in the specimens treated at 400°C, which significantly improved surface hydrophilicity. But both surface roughness and hydrophilicity reduced when oxidized at 500°C and 600°C, suggesting that hydrophilicity was dominated by the surface roughness. In addition, this surface treatment did not reduce the biocompatibility of the metallic Ti substrates against murine osteoblasts (MC3T3).  相似文献   

12.
The physicochemical properties of titania (anatase) prepared from hydrated titanium dioxide by centrifugal thermal activation (CTA) at 140–700°C were studied. It was found that the microstructure and the texture parameters of anatase prepared by the above method were considerably different from those of the samples prepared by the traditional thermal decomposition of titanium hydroxide. The conditions of centrifugal activation exerted a considerable effect on the structure and the texture parameters of the resulting anatase. The crystal structure of anatase prepared at a temperature lower than 650°C was imperfect, and it approached a regular structure only at a temperature of >650°C. At temperatures higher than 300°C, the samples of TiO2 prepared using CTA were characterized by higher specific surface areas, fine pore structures, and comparable mesopore volumes, as compared with the samples prepared by commonly used synthetic methods.  相似文献   

13.
Nanodispersed titanium oxyhydrate was obtained by tetrabutoxy titanium hydrolysis in the presence of a chelating agent, acetylacetone. The introduction of a chelating agent to tetrabutoxy titanium hydrolysis in a water–ethanol mixture allows one to control the hydrolysis rate. According to X-ray powder diffraction data, amorphous titanium oxyhydrate after annealing at 400°C transforms to anatase, the crystallites of which are 6.2–8.4 nm in size. Transmission electron microscopy showed that the anatase particles are close to spheres 5–9 nm in diameter. The amorphous materials were studied by differential thermal analysis, thermogravimetric analysis, and mass spectrometric analysis of released gases. The benzene adsorption by the produced materials was determined. The nitrogen adsorption isotherms of two samples were constructed, and the specific surface area of the anatase particles and the pore size were found (148.5 and 98 m2/g, and 4.4 and 4.0 nm, respectively).  相似文献   

14.
Well‐ordered TiO2 nanotubes were prepared by the electrochemical anodization of titanium in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 20 min, followed by annealing. The surface morphology and crystal structure of the samples were examined as a function of the annealing temperature by field emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD), respectively. Crystallization of the nanotubes to the anatase phase occurred at 450 °C, while rutile formation was observed at 600 °C. Disintegration of the nanotubes was observed at 600 °C and the structure vanished completely at 750 °C. Electrochemical corrosion studies showed that the annealed nanotubes exhibited higher corrosion resistance than the as‐formed nanotubes. The growth of hydroxyapatite on the different TiO2 nanotubes was also investigated by soaking them in simulated body fluid (SBF). The results indicated that the tubes annealed to a mixture of anatase and rutile was clearly more efficient than that in their amorphous or plain anatase state. The in vitro cell response in terms of cell morphology and proliferation was evaluated using osteoblast cells. The highest cell activity was observed on the TiO2 nanotubes annealed at 600 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Pöppl  L.  Tóth  E.  Tóth  M.  Pászli  I.  Izvekov  V.  Gábor  M. 《Journal of Thermal Analysis and Calorimetry》1998,53(2):585-596
Cross-linked montmorillonite was prepared by reacting homoionic sodium form of bentonite (Na-M) from Istenmezeje (Hungary) with high molecular weight polyhydroxy-aluminum complex. The complex was prepared by controlled hydrolysis of alumina macrocation. The intercalated clay (Na-Al-M) was thermally treated to convert the hydroxy cations to oxide pillars. The pillared products were characterized by X-ray powder diffraction (XRD), Fourie transform infrared spectroscopy (FTIR), (thermogravimetry (TG), differential thermal analysis (DTA) and thermal analysis-mass spectrometry (TA-MS) methods. The specific surface area as well as pore size and pore structure distribution of samples were measured by nitrogen, water and carbon tetrachloride adsorption, and the heat of immersion was also determined. The pillared products were characterized by d(001) reflections of 19 Å, which is stable even at 500°C. The interaction of polymer alumina caused several changes in the obtained FTIR spectra due to the formation of different new bonds. The rate of dehydroxylation of the pillared product is very moderate, the water release occurred in different temperature ranges according to TA-MS results. Dehydration starts at interfaces and at the wall of pores, occurring nearly with uniform rate at 250-500°C. DTA curve indicates the formation of a new phase at 950°C. The obtained surface area of the pillared product by nitrogen adsorption becomes larger (208 m2 g-1) with respect to the non pillared clay, which decreases less than 10% upto 700°C. The pillared sample has a definite pore structure, the quantity of micropores (0-40 Å) decreased with increasing of macropores (>1000 Å). The obtained domestic pillared montmorillonite possesses a high degree of thermal stability and may be used as adsorbent.  相似文献   

16.
Porous anatase is attractive because of its notable photo-electronic properties. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60°C and the solvent was extracted (aerogel). Mesoporous TiO2 consisting of anatase nano-particles, about 5 nm in diameter, have been obtained. Thermal evolution of the microstructure of the aerogel was evaluated by TGA-DTA, N2 adsorption, TEM and XRD, and discussed in comparison with that of the corresponding xerogel. The diffraction peaks of anatase were found for the as-extracted gel while the xerogel dried at 90°C was amorphous. After calcination at 600°C, the average pore size of the aerogel, about 20 nm in diameter, was 4 times larger than that of the xerogel, and the pore volume, about 0.35 cm3 g−1, and the specific surface area, about 60 m2 g−1, were 2 times larger than those of the xerogel. XRD peaks of rutile have been found after calcination at 600°C. The particle sizes of anatase and rutile are about 13 and 25 nm in diameter, respectively. The surface morphology of TiO2 nano-particles has been discussed in terms of their surface fractal dimensions estimated from the N2 gas adsorption isotherms.  相似文献   

17.
Nanostructured titanium dioxide films have been reported to be used in many applications ranging from optics and solar energy devices to gas sensors. This work describes the synthesis of nanocrystalline titania films via an aqueous solution-gel method. The thin films are deposited by spin coating an aqueous citratoperoxo-Ti(IV)-precursor solution onto a silicon substrate. The influence of processing parameters like Ti4+ concentration and crystallization temperature on the phase formation, crystallite size and surface morphology of the films is studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, the effect of successive layer deposition on the film thickness of the resulting films is studied by means of cross sectional SEM. SEM and TEM micrographs clearly show that, after optimization of the process parameters, thin, smooth, dense nanocrystalline films are synthesized in a reproducible manner. The films are composed of 15–20 nm grains. At higher crystallization temperatures (600, 650°C) also larger particles (40–70 nm) are present. XRD data reveal that a phase pure anatase film is formed at 450°C. Crystallization temperatures equal to or higher than 600 °C however give rise to the formation of both the anatase and rutile crystalline phases. The smoothness of the films is proved by their very low rms surface roughness (≤1.1 nm) measured by AFM.  相似文献   

18.
Ammonium metavanadate is subjected to thermal treatment in the range 180–550°C and structural and surface area changes are studied by X-ray diffraction and N2 adsorption. DTA and TGA show the existence of a large endotherm (260°C) possibly composed of several stages, and a much smaller one (340°C) which is responsible for evolution of the molecule of water associated with the V2O5 initially formed. Three exotherms also appear and explanations for their presence are given. The phases formed, as well as the specific surface areas, are determined for the products obtained in a vacuum and in the presence of water vapour, and changes in surface areas are related to the phase transformations and dehydration of the products formed during thermal treatment.  相似文献   

19.
Thermal analysis (TA) techniques were applied in order to predict the influence of thermal treatment, on the photocatalytic performance of TiO2 materials prepared via sol–gel method in various temperatures between 250 and 600 °C in different alcohols (methanol/ethanol). Calorimetric results showed that the formation of TiO2 is faster in methanol than in ethanol. TA patterns showed that slight differences observed in the thermal behavior of the material can affect both its textural and photocatalytic properties. The appearance of the endothermic peaks in the area of 250–450 °C refer to crystallization of amorphous to crystalline phases or to the transformation of the less active rutile to the more active anatase phase. The results obtained from TG/DSC are in accordance to XRD results and SEM images. Thermal treatment affects the photocatalytic properties of the materials. Samples prepared in methanol showed better photocatalytic behavior than those in ethanol while the increase in temperature decreases the effectiveness of the materials.  相似文献   

20.
Four samples of Venezuelan lateritic bauxites were heated to 300, 600 and 1000°C and the thermal reactions were studied by X-ray diffraction (XED) and by chemical extractability of silica and alumina. Gibbsite was converted to boehmite at 300°C, to an amorphous phase at 600°C and partly to corundum at 1000°C, with isomorphic substitution of Fe for some of the Al in the corundum structure. Goethite was converted to protohematite at 600°C and the hematite at 1000°C, with isomorphic substitution for Al for some of the Fe in both α-Fe2O3 varieties. Ti contributed by ilmenite is also occluded by the hematites. The occlusion of Ti takes place at 1000°C during the decomposition of the ilmenite and concomitant recrystallization of α-Fe2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号