首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The in-plane elastic buckling of a steel column with load-dependent supports under thermal loading is investigated. Two elastic rotational springs at the column ends are used to model the restraints which are provided by adjacent structural members or elastic foundations. The temperature is assumed to be linearly distributed across the section. Based on a nonlinear strain–displacement relationship, both the equilibrium and buckling equations are obtained by using the energy method. Then the limits for different buckling modes and the critical temperature of columns with different cases are studied. The results show that the proposed analytical solution can be used to predict the critical temperature for elastic buckling. The effect of thermal loading on the buckling of steel columns is significant. Furthermore, the thermal gradient plays a positive role in improving the stability of columns, and the effect of thermal gradients decreases while decreasing the modified slenderness ratios of columns. It can also be found that rotational restraints can significantly affect the column elastic buckling loads. Increasing the initial stiffness coefficient α or the stiffening rate β of thermal restraints will increase the critical temperature.  相似文献   

2.
The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate–substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.  相似文献   

3.
In this work, we present analytic formulas for calculating the critical buckling states of some plastic axial columns of constant cross-sections. The associated critical buckling loads are calculated by Euler-type analytic formulas and the associated deformed shapes are presented in terms of generalized trigonometric functions. The plasticity of the material is defined by the Hollomon's power-law equation. This is an extension of the Euler critical buckling loads of perfect elastic columns to perfect plastic columns. In particular, critical loads for perfect straight plastic columns with circular and rectangular cross-sections are calculated for a list of commonly used metals. Connections and comparisons to the classical result of the Euler–Engesser reduced-modulus loads are also presented.  相似文献   

4.
This paper presents an efficient mathematical model for studying the buckling behavior of geometrically perfect elastic two-layer composite columns with interlayer slip between the layers. The present analytical model is based on the linearized stability theory and is capable of predicting exact critical buckling loads. Based on the parametric analysis, the critical buckling loads are compared to those in the literature. It is shown that the discrepancy between the different methods can be up to approximately 22%. In addition, a combined and an individual effect of pre-buckling shortening and transverse shear deformation on the critical buckling loads is studied in detail. A comprehensive parametric analysis reveals that generally the effect of pre-buckling shortening can be neglected, while, on the other hand, the effect of transverse shear deformation can be significant. This effect can be up to 20% for timber composite columns, 40% for composite columns very flexible in shear (pyrolytic graphite), while for metal composite columns it is insignificant.  相似文献   

5.
The non-conservative stability of an intermediate spring supported uniform column clastically restrained at one end and subjected to a follower force at the other unsupported end is studied. It is found that when the intermediate spring support is far from the unsupported end, the instability mechanism is flutter. As the intermediate spring support approaches the unsupported end, the instability mechanism is changed from flutter to divergence with the increase of intermediate spring stiffness. For the hinged-intermediate and guided-intermediatc spring supported columns, the critical buckling load of flutter instability will first decrease, then increase as the intermediate spring stiffness is increased. Nevertheless, when the instability mechanism is divergence, the critical buckling load depends on the location of the intermediate spring support only, whereas for the clamped-intermediate spring supported column the critical buckling load of divergence instability decreases monotonically to a fixed value as the intermediate spring stiffness is increased. Finally, the influence of elastic end restraints on the stability of the column is also investigated.  相似文献   

6.
A mathematical formulation of column optimization problems allowing for bimodal optimum buckling loads is developed in this paper. The columns are continuous and linearly elastic, and assumed to have no geometrical imperfections. It is first shown that bimodal solutions exist for columns that rest on a linearly elastic (Winkler) foundation and have clamped-clamped and clamped-simply supported ends. The equilibrium equation for a non-extensible, geometrically nonlinear elastic column is then derived, and the initial post-buckling behaviour of a bimodal optimum column near the bifurcation point is studied using a perturbation method. It is shown that in the general case the post-buckling behaviour is governed by a fourth order polynomial equation, i.e., near the bifurcation point there may be up to four post-buckling equilibrium states emanating from the trivial equilibrium state. Each of these equilibrium states may be either supercritical or subcritical in the vicinity of the bifurcation point. The conditions for stability of these non-trivial post-buckling states are established based on verification of positive semi-definiteness of a two-by-two matrix whose coefficients are integrals of the buckling modes and their derivatives. In the end of the paper we present and discuss numerical results for the post-buckling behaviour of several columns with bimodal optimum buckling loads.  相似文献   

7.
Motivated by the application of Winkler-like models for the buckling analysis of embedded carbon nanotubes, an orthotropic Winkler-like model is developed to study the buckling behavior of embedded cytoskeletal microtubules within the cytoplasm. Experimental observations of the buckling of embedded cytoskeletal microtubules reveal that embedded microtubules bear a large compressive force as compared with free microtubules. The present theoretical model predicts that embedded microtubules in an elastic medium bear large compressive forces than free microtubules. The estimated critical pressure is in good agreement with the experimental values of the pressure-induced buckling of microtubules. Moreover, due to the mechanical coupling of microtubules with the surrounding elastic medium, the critical buckling force is increased considerably, which well explains the theory that the mechanical coupling of microtubules with an elastic medium increases compressive forces that microtubules can sustain. The model presented in the paper is a good approximation for the buckling analysis of embedded microtubules.  相似文献   

8.
An experimental and analytical investigation is carried out to examine the in-plane compressive response of pyramidal truss core sandwich columns. The identified failure mechanisms include Euler buckling, shear buckling and face wrinkling. The operative mechanism is dependent on the properties of the bulk material and geometry of the sandwich columns and analytical formulae are derived for each of these modes. Failure maps are constructed for sandwich columns made from an elastic ideally-plastic material and AISI 304 stainless steel which has a strongly strain hardening response. Pyramidal core sandwich columns made from 304 stainless steel have been designed using these mechanism maps and the measured responses are compared with the analytical predictions. Finally, optimal single layer and multi-layer pyramidal sandwich column designs that minimize the weight for a given load carrying capacity are calculated using the developed analytical models for the failure of the sandwich columns. The results demonstrate that pyramidal core sandwich columns outperform the currently used hat-stiffened column design.  相似文献   

9.
蒋良潍  黄润秋 《力学学报》2006,14(3):289-294
对反倾层状岩体斜坡弯曲-拉裂的失稳破坏判据,已有研究分别基于两种力学模型进行推导,即竖直压杆弹性屈曲稳定和平直梁弯折破坏模型,但对层间错动阻力及挠度产生附加弯矩等因素未加以考虑,不尽合理。在反倾斜坡岩层受力分析基础上,建立考虑了板侧层间错动阻力的下端嵌固、上端自由的斜置等厚弹性悬臂板梁模型,统一地通过瑞利-里兹能量方法,推导了弹性屈曲临界条件和嵌固端弯折破坏临界条件。实例计算及讨论表明,弹性屈曲判据适用于陡立岩层;而中-陡反倾岩层应主要为弯折破坏,但层间的力学性质对弯折临界判据值具有较大影响。  相似文献   

10.
The torsional buckling of a plastically deforming cruciform column under compressive load is investigated. The problem is solved analytically based on the von Kármán shallow shell theory and the virtual work principle. Solutions found in the literature are extended for path-dependent incremental behaviour as typically found in the presence of the vertex effect that is present in metallic polycrystals.At the critical load for buckling the direction of straining changes by an additional shear component. It is shown that the incremental elastic–plastic moduli are spatially nonuniform for such situations, contrary to the classical J2 flow and deformation theories. The critical shear modulus that governs the buckling equation is obtained as a weighted average of the incremental elastic–plastic moduli over the cross-section of the cruciform.Using a plasticity model proposed by the authors, that includes the vertex effect, the buckling-critical load is computed for a aluminium column both with the analytical model and a FEM-based eigenvalue buckling analysis. The stable post-buckling path is determined by the energy criterion of path-stability. A comparison with the experimentally obtained classical results by Gerard and Becker (1957) shows good agreement without relying on artificial imperfections as necessary in the classical J2 flow theory.  相似文献   

11.
Summary The postbuckling behavior of an elastic column with spring supports of equal stiffness of extensional type at both clamped ends is studied. Attention is focused on those of spring stiffnesses near the critical value at which, under axial load, the column becomes critical with respect to two buckling modes simultaneously. By using the Liapunov-Schmidt-Koiter approach, we show that there are precisely two secondary bifurcation points on each primary postbuckling state for the spring stiffness greater than the critical value. The bifurcation takes place at one of the two least buckling loads. The corresponding secondary postbuckling states connect all the secondary bifurcation points in a loop. For the spring stiffness less than the critical value, no secondary bifurcation occurs. Asymptotic expansions of the primary and secondary postbuckling states are constructed. The stability analysis indicates that the primary postbuckling state for the spring stiffness greater than the critical value is bifurcating from the first buckling load and becomes unstable from a stable state via the secondary bifurcation, i.e., secondary buckling occurs. Received 22 April 1997; accepted for publication 22 December 1997  相似文献   

12.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

13.
The paper presents a procedure for the analysis of stability and initial post-buckling behaviour of spliced columns in sway and non-sway steel frames. The main assumptions are linear elasticity and geometrically perfect columns that are loaded by a compressive force which retains its direction as the column deflects. An energy-based formulation that includes a polynomial Rayleigh–Ritz approximation into the potential energy function, in combination with the Lagrange’s method of undetermined multipliers, has been found very convenient for this type of problem. The system is thus described by a set of kinematically admissible generalized coordinates and a single loading parameter. First, the critical state is characterized by means of linear eigenvalue analysis. A parametric study is implemented to assess the critical load. The numerical results are used to develop a relatively simple yet reasonably accurate engineering method for predicting the critical behaviour of spliced columns in sway and non-sway steel frames. The energy formulation is then applied to the search of post-buckling branches of bifurcation points. The approach embraces path-following methods based on perturbation schemes built on a Newton type iterative procedure. This is illustrated in the application to post-bifurcation in columns with different splice mechanical characteristics. The findings suggest that the splice tangent stiffness has a major influence on the overall column behaviour.  相似文献   

14.
The buckling and post-buckling behaviour of prismatic aluminium columns from stocky to very slender shapes is investigated. The unconventional, in terms of buckling tests, displacement control of compressive load and a series of loadings provided an enhanced insight into the buckling process. A phenomenon of buckling load drop has been detected in columns of intermediate slenderness, reaching over 20% of the load early critical value. This newly observed occurrence resembles finite disturbance instability, which until recently was commonly believed to only appear in cases of thin walled cylindrical shells, but not columns. The observation is in contradiction to predicted results from the elasto-plastic buckling models of Engesser or Shanley, with constant or growing values of load during the post-buckling process. Further tests on columns of intermediate slenderness, with strain gauges glued at node and anti-node locations of the buckled profiles, revealed that even minute buckling results in fields of highly non-symmetric residual microplastic strain. The results of the present study indicate that running column buckling tests under displacement control is worthy of being adopted as common practice. The envelope of column post-buckling states can be conveniently determined. This information will in turn allow for the quick and reliable estimation of the safety of a column, which has undergone accidental or deliberate damage in the form of limited buckling when under operational load.  相似文献   

15.
Diffuse brain injury is caused by rapid rotation of the head, and causes strain injury to tissue throughout the brain. Following strain injury, axons exhibit delayed recovery, showing regional buckling behavior immediately after stretch and returning to their original appearance over an extended period of time. This axonal buckling is hypothesized to occur as a result of localized stretching within the axon: Rapid strain causes mechanical damage to microtubules, increasing the effective length of axons. This damage is repaired gradually returning the axon to its initial length.Here, we test the hypothesis that localized stretching is a possible explanation for the regional buckling behavior. An elongated region of axon is modeled as an Euler beam on an elastic foundation, where the foundation represents the surrounding brain tissue, which consists of glial cells and extracellular matrix. After stretch the elastic foundation returns immediately to its pre-stretch length, while the axon is initially elongated and returns to its original length over a longer period of time. The model exhibits solutions similar to those observed experimentally in post-stretch axons, with undulations that have a similar wavelength and amplitude.  相似文献   

16.
The paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard cold-formed section shaping in local buckling analysis problems. Furthermore, attention is paid to the impact of material characteristics on buckling stresses in a nonlinear domain. The objective of the paper is to propose a finite element method (FEM) model and a relevant numerical procedure in ABAQUS, complemented by an analytical one. It should be noted that the proposed FEM energetic technique makes it possible to compute accurately the critical buckling stresses. The suggested numerical method is intended to accurately follow the entire structural equilibrium path under an active load in elastic and inelastic ranges. The paper is also focused on correct modelling of interactions between sheets of cross section of a possible contact during buckling analysis. Furthermore, the FEM results are compared with the analytical solution. Numerical examples confirm the validity of the proposed FEM procedures and the closed-form analytical solutions. Finally, a brief research summary is presented and the results are discussed further on.  相似文献   

17.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

18.
The problem of determining that shape of column which has the largest critical buckling load is solved, assuming that the length and volume are given and that each cross section is convex. The strongest column has an equilateral triangle as cross section, and it is tapered along its length, being thickest in the middle and thinnest at its ends. Its buckling load is 61.2% larger than that of a circular cylinder. For columns all of whose cross sections are similar and of prescribed shape-not necessarily convex—the best tapering is found to increase the buckling load by one third over that of a uniform column. This result, which was independently obtained by H. F. Weinberger, is originally due to Clausen (1851). For a uniform column, triangularizing is shown to increase the buckling load by 20.9% over that of a circular cylinder. The results lead to isoperimetric inequalities for the buckling loads of arbitrary columns. The research reported in this paper has been sponsored by the Office of Naval Research under Contract No. (285) 46.  相似文献   

19.
A solution for buckling of a stiff strip of finite width bonded to a compliant elastic half-space and subjected to uniform axial compression is presented. Approximate semi-analytical and finite element solutions are obtained and compared with a two-dimensional case of a plate on elastic foundation. The comparison demonstrates that the two-dimensional solution can be applied to predict the buckling wavelength and critical compressive strain when the width of the strip is equal to or larger than the buckling wavelength. For narrow strips, the wavelength is smaller and critical strain is higher than that of a plate on foundation.  相似文献   

20.
The snap-through buckling of two simple structures subjected to quasistatic loading is analyzed by use of the elastica theory of prismatic bars. In the first problem, the deformation of perfect and imperfect three-hinged deep trusses is considered and the results of the previous experimental observations are explained analytically. In the second problem, the snap-through behavior of a column restrained by an elastic wire is studied and a comparison of critical loads are made with the approximate solutions obtained recently by Nachbar [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号