首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus.  相似文献   

2.
Sodium citrate dihydrate doped with Mn3+ ions, namely trisodium(I) managnese(III) citrate(3−) dihydrate, [Na3Mn0.011(C6H5O7)(H2O)2]n, was obtained during attempts to prepare some complex MnIII citrates from a concentrated strong alkaline solution containing Na+, Mn3+ and citrate ions. The compound is isostructural with the recently described Na3(C6H5O7)·2H2O [Fischer & Palladino (2003). Acta Cryst. E 59 , m1080–m1082]. The essential difference between these two structures is the presence of a very small proportion (0.205 wt%) of Mn3+ ions, which are positioned at the special 4e Wyckoff position in C2/c, where they are in a highly distorted octahedral environment of O atoms from two citrate anions.  相似文献   

3.
It has recently been proposed that disulfide/thiolate interconversion supported by transition‐metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the Mn+?disulfide/M(n+1)+?thiolate switch properties. Like its isostructural CoII‐based parent compound, CoII 2 SS (Angew. Chem. Int. Ed.­ 2014 , 53, 5318), the new dinuclear disulfide‐bridged MnII complex MnII 2 SS can undergo an MII?disulfide/MIII?thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of MIII to MII with the concomitant oxidation of the thiolates, requires the release of iodide. The MnII 2 SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear MnIII?thiolate complex MnIIII . The process is much slower (ca. 16 h) and much less efficient (ca. 30 % yield) with respect to the instantaneous and quantitative conversion of CoII 2 SS into CoIIII under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT‐calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, MII?disulfide/MIII?thiolate interconversion is reversible. However, when the iodide is removed with Ag+, the MII 2 SS complexes are regenerated, albeit much slower for Mn than for Co systems.  相似文献   

4.
Summary The structures of the volatile bimetalliciso-propoxides of later 3d metals with the general formula, [M{Al(OPr-i)4}n] where M=CrIII, MnII, FeIII, CoII, NiII and CuII have been investigated by visible reflectance and electron spin resonance spectroscopy as well as magnetic measurements.  相似文献   

5.
The reaction in basic media of manganese chloride with Schiff bases derived from the condensation of o-vanillin with different chiral/racemic aminoalcohols yielded in a family of complexes in which the nuclearity, symmetry and magnetic behavior is controlled by changing the position of the chiral carbon. Chiral and racemic clusters with [MnIII6MnIINaI], [MnIII6MnII2NaI2] and [MnIII3MnIINaI] metallic core have been structurally and magnetically characterized. The racemic clusters with an odd number of chiral ligands exhibit the anomalous mixing of ligands with different conformation. Related racemic compounds have been reviewed.  相似文献   

6.
Summary The synthesis and characterization of CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and UO inf2 sup2+ complexes of N-isonicotinamido-N-benzoylthiocarbamide (H2IBTC) are reported. I.r. spectral data show that the ligand behaves in a bidentate, tridentate and/or tetradentate manner. Different stereochemistries are proposed for CrIII, MnII, FeIII, CoII, NiII and CuII complexes on the basis of spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the benzoyl moiety is the backbone of chelation in most complexes.  相似文献   

7.
A series of isostructural cyano‐bridged MnIII(h.s.)–MIII(l.s.) alternating chains, [MnIII(5‐TMAMsalen)MIII(CN)6] ? 4H2O (5‐TMAMsalen2?=N,N′‐ethylenebis(5‐trimethylammoniomethylsalicylideneiminate), MnIII(h.s.)=high‐spin MnIII, MIII(l.s.)=low‐spin CoIII, Mn? Co ; FeIII, Mn? Fe ; MnIII, Mn? Mn ; CrIII, Mn? Cr ) was synthesized by assembling [MnIII(5‐TMAMsalen)]3+ and [MIII(CN)6]3?. The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [‐MnIII‐NC‐MIII‐CN‐] repeating motif, for which the ‐NC‐MIII‐CN‐ motif is provided by the [MIII(CN)6]3? moiety adopting a trans bridging mode between [MnIII(5‐TMAMsalen)]3+ cations. The MnIII and MIII ions occupy special crystallographic positions: a C2 axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn–Teller axis of the MnIII(h.s.) ion is perpendicular to the N2O2 plane formed by the 5‐TMAMsalen tetradentate ligand. These Jahn–Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn‐Naxis‐C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter‐chain M???M distance being relatively large at 9 Å due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5‐TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn? Fe and Mn? Mn display intra‐chain ferromagnetic interactions, whereas Mn? Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single‐chain magnet (SCM) behavior of these three systems, whereas Mn? Co is merely paramagnetic with SMn=2 and D/kB=?5.3 K (D being a zero‐field splitting parameter). At low temperatures, the Mn? M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite‐chain and finite‐chain regimes for the SCM behavior. These isostructural hetero‐spin SCMs offer a unique series of alternating [‐Mn‐NC‐M‐CN‐] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

8.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

9.
Summary The complexes of MnII, CoII, NiII, CuII, ZnII, CdII, HgII, CoIII and UO 2 2+ ions with 2-hydroxyimino-3-(2-hydrazonopyridyl)-butane (HL) have been synthesised and characterized by elemental analyses, molar conductivities, magnetic measurements and spectral (i.r., visible, n.m.r.) studies. I.r. spectra show that HL behaves as a neutral or mononegative ligand and binds in a bidentate and/or tridentate manner. Also, HL behaves as oxidizing agent towards CoII forming diamagnetic CoIII complexes depending on the preparative conditions. Different stereochemistries are proposed for MnII, CoIII, CoII, NiII and CuII on the basis of spectral and magnetic studies.  相似文献   

10.
The pressure-induced switch of the long axis of MnF63− units in the monoclinic Na3MnF6 compound and Mn3+-doped Na3FeF6 is explored with the help of first principles calculations. Although the switch phenomenon is usually related to the Jahn-Teller effect, we show that, due to symmetry reasons, it cannot take place in 3dn (n=4, 9) systems displaying a static Jahn-Teller effect. By contrast, we prove that in Na3MnF6 the switch arises from the anisotropic response of the low symmetry lattice to hydrostatic pressure. Indeed, while the long axis of a MnF63− unit at ambient pressure corresponds to the Mn3+−F3 direction, close to the crystal c axis, at 2.79 GPa the c axis is reduced by 0.29 Å while b is unmodified. This fact is shown to force a change of the HOMO wavefunction favoring that the long axis becomes the Mn3+−F2 direction, not far from crystal b axis, after the subsequent relaxation process. The origin of the different d-d transitions observed for Na3MnF6 and CrF2 at ambient pressure is also discussed together with changes induced by pressure in Na3MnF6. The present work opens a window for understanding the pressure effects upon low symmetry insulating compounds containing d4 or d9 ions.  相似文献   

11.
Using a fully relativistic DV cluster method, we study the electronic structure of a large fragment of the crystal lattice of zircon ZrSiO4 with a plutonium dopant atom replacing a Zr4+ zirconium atom. Three possible states of the impurity center are considered: Pu4+ (isovalent substitution), Pu3+ (non-isovalent substitution), and Pu3+ with an oxygen vacancy in the nearest environment that provides charge compensation. Relaxation of the ZrSiO4 crystal lattice near a defect is simulated using a semi-empirical method of atomic pair potentials (GULP program). An analysis of overlap populations and effective charges on atoms shows that the chemical bonding of plutonium with a matrix is covalent, while isovalent substitution yields a more stable system than a Pu3+ impurity. In the presence of vacancies the structure of chemical bonding is intermediate with respect to substitutions Pu4+ Zr4+ and Pu3+ Zr4+.  相似文献   

12.
Gamma ray induced decomposition of two series of double nitrates; 2MINO3⋯Ln(NO3)3x H2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3MII(NO3)2·2LnIII(NO3)3⋯24H2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH+4 < Rb+ ≅ Cs+ < Na+ < K+ and those of cerium NH+4 < Rb+ <Na+ <K+. G(NO2) values of lanthanum double nitrates with bivalent cations at an absorbed dose of 206 kGy range from 0.22 to 1.05 and follow the order Zn2+ < Co2+ < Mg2+ while for cerium salts are in the range 0.62–0.91 in the order Zn2+ ≅ Co2+ < Mg2+. In fact double nitrates of cerium with Zn2+ and Co2+ exhibit almost similar G(NO2) values over the dose range 5–640 kGy. X-ray powder diffraction patterns of the irradiated Mg-La double salt indicate the possibility of structural phase transformation at certain doses.  相似文献   

13.
A diamagnetic AuI4CoIII2 hexanuclear complex, [Au4Co2(dppe)2(l ‐nmc)4]2+ ([ 1L ‐ nmc ]2+; dppe=1,2‐bis(diphenylphosphino)ethane, l ‐H2nmc=N‐methyl‐l ‐cysteine), was newly synthesized by the reaction of [Co(l ‐nmc)2]? with [Au2Cl2(dppe)] and crystallized with different inorganic anions (X=ClO4?, NO3?, Cl?, SO42?) to produce ionic solids ([ 1L ‐ nmc ]Xn). Single‐crystal X‐ray analysis revealed that all the solids crystallize in the chiral space group F432 with a face‐centered‐cubic lattice structure consisting of supramolecular octahedra of complex cations. The paramagnetic nature of all the solids was evidenced by magnetic susceptibility measurements, showing the variation of the oxidation states of two cobalt centers in [ 1L ‐ nmc ]n+ from CoII1.00CoIII1.00 for X=ClO4? or NO3? to CoII0.67CoIII1.33 for X=Cl?, via CoII0.83CoIII1.17 for X=SO42?. The difference in the CoII/III mixed‐valences was explained by the difference in sizes and charges of counter anions accommodated in lattice interstices with a fixed volume.  相似文献   

14.
Single phase ceramics of cobalt manganese oxide spinels Mn3?xCoxO4 were structurally characterized by neutron powder diffraction over the whole solid solution range. For x < 1.75, ceramics obtained at room temperature by conventional sintering techniques are tetragonal, while for x  1.75 ceramics sintered by Spark Plasma Sintering are of cubic symmetry. The unit cells, metal–metal and metal–oxygen average bonds decrease regularly with increasing cobalt content. Rietveld refinements using neutron data show that cobalt is first preferentially substituted on the tetrahedral site for x < 1, then on the octahedral site for increasing x values. Structural methods (bond valence sum computations and calculations based on Poix's work in oxide spinels) applied to our ceramics using element repartitions and [M–O] distances determined after neutron data refinements allowed us to specify the cation distributions in all phases. Mn2+ and/or Co2+ occupy the tetrahedral site while Mn3+, Co2+, CoIII (cobalt in low-spin state) and Mn4+ occupy the octahedral site. The electronic conduction mechanisms in our highly densified ceramics of pure cobalt and manganese oxide spinels are explained by the hopping of polarons between adjacent Mn3+/Mn4+ and Co2+/CoIII on the octahedral sites.  相似文献   

15.
Summary The synthesis and characterization of MnII, CoII, NiII, CuII, ZnII, CdII UO 2 2+ , CrIII and FeIII complexes of biacetylmonoxime nicotinoyl hydrazone (H2BMNH) are reported. Elemental analysis, molar conductance, magnetic moment and spectral (i.r., visible and n.m.r.) measurements have been used to characterize the complexes. I.r. spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the MnII, NiII, CrIII and FeIII complexes, while a square-planar structure is proposed for both CoII and CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

16.
Shen  Xiaoping  Li  Baolong  Zou  Jianzhong  Xu  Zheng  Yu  Yunpeng  Liu  Shixiong 《Transition Metal Chemistry》2002,27(4):372-376
K3[Cr(CN)6] reacts with the mononuclear MnIII complex Mn(salen)ClO4 · 2H2O [salen: N,N-ethylenebis(salicylideneiminato)dianion] to give a bimetallic heptanuclear complex cation salt [Cr{(CN)Mn(salen · H2O)}6][Cr(CN)6]6H2O. In the complex anion, [Cr{(CN)Mn(salen · H2O)}6]3+, six MnIII ions coordinate to a CrIII center via cyano bridges, forming a spherical species with 3 symmetry. A study of magnetic properties shows the presence of antiferromagnetic interaction through the cyanide bridge between CrIII (S = 3/2) and MnIII (S = 4/2) and results in a ground state S = 21/2.  相似文献   

17.
Summary The half Wells-Dawson structure complex Na9PW8-MoO34·11H2O has been prepared by reaction of Na2WO4·2H2O, Na2MoO4·2H2O and KH2PO4 in water. A series of transition metal substituted heteropolyoxometalate complexes with ternary Keggin structures of the general formula [TBA]3H n [PW9MoM2O38 (H2O)2]·3C3H6O (TBA = tetrabutylammonium; n = 2, M = Fe3+; n = 4, M = Mn2+,Co2+,Cu2+or Zn2+), have been synthesized using Na9PW8MoO34·11H2O and the transition metal nitrate as the starting materials in aqueous solution. The compounds were characterized by elemental analyses and spectroscopy. X.p.s. data indicate that the binding energies of all the elements in the title compounds are lower than those in similar compounds. The magnetic susceptibilities of the compounds reveal antiferromagnetic properties.  相似文献   

18.
Wei  Xingyao  Li  Jianzhang  Zhou  Bo  Qin  Shengying 《Transition Metal Chemistry》2004,29(4):457-462
CoII and MnIII complexes with aza-crown or morpholino substituted Salen and Salophen ligands were synthesized starting from benzo-10-aza-15-crown-5 or morpholine. The saturated oxygen uptake of the CoII complexes CoL1–CoL4 in MeOCH2CH2OMe solution was determined at different temperatures. The equilibrium constant (KO2) and thermodynamic parameters (H 0, S 0) for oxygenation were calculated. Meanwhile, the corresponding MnIII complexes, MnL1Cl–MnL4Cl, were employed as models of mimic mono-oxygenase to catalyze PhCH=CH2 epoxidation at ambient temperature and pressures. The modulation of O2-binding capabilities and catalytic oxidation performance by these pendant substituents in the complexes were investigated and compared with the parent complexes ML5(Msalen) and ML6(Msalophen). The results indicate that the dioxygen affinities and catalytic oxidation activities of these complexes have been much more enhanced by aza-crown pendants than by morpholino pendants. Moreover, the O2-binding capabilities of bis(aza-crown ether) CoII complexes, CoL1 and CoL2, would also be improved by adding alkali metal (Li+, Na+ and K+) cations to the system. Adding K+ shows the most significant enhancement of dioxygen affinity through its forming sandwich-type complexes with two aza-crown ethers of CoL1 and CoL2. Likewise, the bis(aza-crown ether) MnIII complexes, MnL1 and MnL2, exhibit the best catalytic activity: the conversions of PhCH=CH2 attain 76.6, 79.5% respectively.  相似文献   

19.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

20.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号