首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Room temperature synthesis of metal-organic frameworks (MOFs) has been developed for four well-known MOFs: MOF-5, MOF-74, MOF-177, and MOF-199. A new isoreticular metal framework (IRMOF), IRMOF-0, having the same cubic topology as MOF-5, has been synthesized from acetylenedicarboxylic acid using this method to accommodate the thermal sensitivity of the linker. Despite acetylenedicarboxylate being the shortest straight linker that can be made into an IRMOF, IRMOF-0 forms as a doubly interpenetrating structure, owing to the rod-like nature of the linker.  相似文献   

2.
Zn-based multivariate metal-organic frameworks (MTV-MOFs) with different functionality proportions and with different thermal and chemical stabilities can be obtained by employing the appropriate synthesis method.  相似文献   

3.
Metal-organic framework (MOF) materials pose an interesting alternative to more traditional nanoporous materials for a variety of separation processes. Separation processes involving nanoporous materials can be controlled by either adsorption equilibrium, diffusive transport rates, or a combination of these factors. Adsorption equilibrium has been studied for a variety of gases in MOFs, but almost nothing is currently known about molecular diffusion rates in MOFs. We have used equilibrium molecular dynamics (MD) to probe the self-diffusion and transport diffusion of a number of small gas species in several MOFs as a function of pore loading at room temperature. Specifically, we have studied Ar, CH4, CO2, N2, and H2 diffusion in MOF-5. The diffusion of Ar in MOF-2, MOF-3, and Cu-BTC has been assessed in a similar manner. Our results greatly expand the range of MOFs for which data describing molecular diffusion is available. We discuss the prospects for exploiting molecular transport properties in MOFs in practical separation processes and the future role of MD simulations in screening families of MOFs for these processes.  相似文献   

4.
The utilization of hydrogen in fuel-cell powered vehicles is limited by the lack of a safe and effective system for hydrogen storage. At the present time, there is no viable storage technology capable of meeting the DOE targets. Porous metal-organic frameworks (MOFs) are novel and potential candidates for hydrogen storage. Until now it is still not possible to achieve any significant hydrogen storage capacity in MOFs at ambient temperature. Here, we report, for the first time, significant amounts of hydrogen storage in MOF-5 and IRMOF-8 at ambient temperature by using a very simple technique via hydrogen dissociation and spillover. Thus, hydrogen uptakes for MOF-5 and IRMOF-8 can be enhanced by a factor of 3.3 and 3.1, respectively (to nearly 2 wt % at 10 MPa and 298 K). Furthermore, the isotherms are totally reversible. These findings suggest that our technique is suitable for hydrogen storage in a variety of MOF materials because of their similar structures as MOF-5 and IRMOF-8.  相似文献   

5.
The functionalisation of well-known rigid metal-organic frameworks (namely, [Zn(4)O(bdc)(3)](n), MOF-5, IRMOF-1 and [Zn(2)(bdc)(2)(dabco)](n); bdc = 1,4-benzene dicarboxylate, dabco = diazabicyclo[2.2.2]octane) with additional alkyl ether groups of the type -O-(CH(2))(n)-O-CH(3) (n = 2-4) initiates unexpected structural flexibility, as well as high sorption selectivity towards CO(2) over N(2) and CH(4) in the porous materials. These novel materials respond to the presence/absence of guest molecules with structural transformations. We found that the chain length of the alkyl ether groups and the substitution pattern of the bdc-type linker have a major impact on structural flexibility and sorption selectivity. Remarkably, our results show that a high crystalline order of the activated material is not a prerequisite to achieve significant porosity and high sorption selectivity.  相似文献   

6.
We report excess hydrogen saturation values from high-pressure isotherms of metal organic framework structures taken at 77 K. Zn benzendicarboxylate (IRMOF-1) and Zn naphthalendicarboxylate (IRMOF-8) linker structures show identical saturation values of 137 hydrogen molecules on a per unit cell basis, despite the higher sorption potential of IRMOF-8 of 6.1 kJ/mol over that of IRMOF-1 of 4.1 kJ/mol. Charge transfer between linker and vertex, as well as surface area, appear to dominate the sorption behavior, over that of linker length in these two systems.  相似文献   

7.
The synthesis of chiral metal–organic frameworks (MOFs) is highly relevant for asymmetric heterogenous catalysis, yet very challenging. Chiral MOFs with MOF-74 topology were synthesised by using post-synthetic modification with proline. Vibrational circular dichroism studies demonstrate that proline is the source of chirality. The solvents used in the synthesis play a key role in tuning the loading of proline and its interaction with the MOF-74 framework. In N,N′-dimethylformamide, proline coordinates monodentate to the Zn2+ ions within the MOF-74 framework, whereas it is only weakly bound to the framework when using methanol as solvent. Introducing chirality within the MOF-74 framework also leads to the formation of defects, with both the organic linker and metal ions missing from the framework. The formation of defects combined with the coordination of DMF and proline within the framework leads to a pore blocking effect. This is confirmed by adsorption studies and testing of the chiral MOFs in the asymmetric aldol reaction between acetone and para-nitrobenzaldehyde.  相似文献   

8.
MOF-5 that sometimes called IRMOF-1 has been intensively studied in recent years to develop efficient photocatalyst to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, Ag/Ag3PO4 nanoparticles incorporated in IRMOF-1 was successfully prepared via hydrothermal approach. The antibacterial activity of synthesized materials (IRMOF-1, Ag/Ag3PO4 nanoparticles and Ag/Ag3PO4-IRMOF-1 nanocomposite was compared against two types of bacteria (Escherichia coli (E. coil) as Gram negative and Staphylococcus aureus (S. aureus) as Gram-positive bacteria). The deactivation of the bacteria by the prepared material was measured in the dark and under visible light irradiation. The antibacterial activity of synthesized samples was investigated by determining the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), growth inhibition assay and inhibition zone. The Ag/Ag3PO4-IRMOF-1 nanocomposite exhibited stronger antibacterial activities than the Ag/Ag3PO4 nanoparticles and IRMOF-1 at all tested bacteria types. Based on inhibition zone, without any light irradiation, Ag/Ag3PO4-IRMOF-1 nanocomposite showed activity toward E. coil, but in presence of light nanocomposite depicted activity toward S. aureus. The results demonstrated that antibacterial activity of all synthesized samples in the dark and light against S. aureus bacteria was more than E. coil bacteria. The antibacterial activity mechanism was due to sustained-release of silver ions in the dark and reactive oxygen species (ROS) under visible light. The bioactivity of IRMOF-1 was related to the degradation of the its structure and the release of Zn2+ ions into the culture medium that bind to the cell wall and deactivation bacteria.  相似文献   

9.
The interaction of water with MOF-5 simulated by molecular dynamics   总被引:1,自引:0,他引:1  
Force field parameters for use with metal-organic framework-5 (MOF-5 or IRMOF-1) are presented. Flexibility within the framework is included in this model, so that structural changes upon interaction with adsorbate molecules can be observed and quantified. The model was validated by comparing simulated lattice parameters of pure MOF-5 with X-ray diffraction results. For the first time, molecular dynamics simulations have been performed that show how water interacts with MOF-5. The framework is stable at water contents up to 2.3% by mass, but distortion in the lattice structure is already evident. At water contents of 3.9% and higher, the framework collapses because of the replacement of MOF O atoms by water O atoms in the Zn coordination shells. As a result, inorganic MOF O atoms are no longer coordinated by four Zn ions, and benzene dicarboxylate linkers are no longer tethered to Zn centers.  相似文献   

10.
Self-diffusion and partition coefficients were measured for two commercial ethylene–propylene-diene copolymers (EPDM) and five solvents at infinite dilution using inverse gas chromatography. Mutual diffusion coefficients for solvents in EPDM also were measured for finite concentration using gravimetric sorption for three of the solvents. From the inverse gas chromatography experimental values for self-diffusion coefficients were obtained. Free-volume parameters were obtained through regression of the self-diffusion coefficient as a function of temperature. Mutual diffusion coefficients as a function of concentration were predicted using free volume theory and compared with experimental data obtained using gravimetric sorption. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1713–1719, 1998  相似文献   

11.
Cohen-Turnbull diffusion theory is used to develop a model for predicting solvent self-diffusion coefficients D1 in nonglassy polymer/solvent solutions. Polymer molecules are envisioned as hindering solvent mobility by reducing the average free volume per unit mass in the system and through the lower mobility of polymer segments relative to solvent molecules. The concentration dependence of D1 predicted by the model is in reasonable agreement with data for the solvents heptane, hexadecane, benzene, cyclohexane, and decalin in polyisobutylene (PIB), and for toluene in polystyrene, poly(methyl mothacrylate), and PIB. Although none of the data is for high concentrations of polymer (volume fractions ?≥0.9) it is anticipated the model will be less representative in this regime where the assumptions in its development are unsure. The model also demonstrates the correct temperature and concentration dependence of the apparent activation energy for diffusion. The only experimental data needed to use the model are the viscosity and critical volume of the pure solvent, and the specific volume of both the solvent and mixture. No binary transport data are required.  相似文献   

12.
The hindered rotor transitions of H(2) adsorbed in the chemically related and prototypical porous metal-organic frameworks IRMOF-1, IRMOF-8, IRMOF-11, and MOF-177 were studied by inelastic neutron scattering to gain information on the specifics of H(2) binding in this class of adsorbents. Remarkably sharp and complex spectra of these materials signify a diversity of well-defined binding sites. Similarities in the spectral features as a function of H(2) loading and correlations with recent crystallographic studies were used to assign transitions ranging in rotational barrier from <0.04 to 0.6 kcal/mol as corresponding to localized adsorption sites on the organic and inorganic components of these frameworks. We find that binding of H(2) at the inorganic cluster sites is affected by the nature of the organic link and is strongest in IRMOF-11 in accord with our adsorption isotherm data. The sites on the organic link have lower binding energies, but a much greater capacity for increases in H(2) loading, which demonstrates their importance for hydrogen uptake by these materials.  相似文献   

13.
The structural organization, the number of hydrogen bonds (H bond), and the self- and mutual diffusion coefficients of ethanol-water mixtures were studied by molecular dynamics simulation. It was found that both the numbers of H bonds per water and per ethanol decrease as the mole fraction of ethanol increases. The composition dependences and the relationships between the self- and the mutual diffusion coefficients were further discussed. The self-diffusion coefficient of water has a large drop as the concentration of ethanol increases from 0 to 0.3 and then it nearly keeps constant, while that of ethanol has a minimum around ethanol mole fraction of 0.5. The mutual diffusion coefficient could be divided into two parts, the kinematic factor and the thermodynamic factor. Both the kinematic and thermodynamic factors for ethanol-water mixtures were calculated. It was found that the change trend of mutual diffusion coefficients with the composition is mainly dependent on the thermodynamic factors.  相似文献   

14.
We have performed measurements of thermal diffusion coefficients DT and solvent self-diffusion coefficients Dss in semidilute to concentrated polymer solutions. Solutes of different glass transition temperatures and solvents of different solvent qualities have been used. The investigated systems are in detail: poly(dimethyl-siloxane) in toluene, tristyrene in toluene, polystyrene in toluene, polystyrene in tetrahydrofuran, polystyrene in benzene, and polystyrene in cyclohexane. The thermal diffusion data are compared to our data and literature data for solvent self-diffusion coefficients. In all systems the concentration dependence of DT closely parallels the one of Dss which may be viewed as a local probe for friction on a length scale of the size of one polymer segment. This identifies local friction as the dominating parameter determining the concentration dependence of DT. Solvent quality, in contrast, has no influence on DT.  相似文献   

15.
Water-in-oil microemulsions stabilized by AOT and dispersed in n-alkane oils with a constant molar water-to-surfactant ratio were studied by dynamic light scattering. A dilution series (in the range of volume fraction of water plus surfactant, phi approximately 0.02-0.52) was used, which allowed us to extract information about droplet sizes, diffusion coefficients, interactions, and polydispersity from experimental data. We report the observation of two diffusive relaxation modes in a concentrated microemulsion (0.20 < phi < 0.5) due to density (collective diffusion) and concentration or polydispersity (self-diffusion) fluctuations. Below this concentration it was difficult to resolve two exponentials unambiguously, and in this case one apparent relaxation mode was observed. It was found that for a given composition self-diffusion is more pronounced in apparent relaxation mode for a shorter chain length alkane. The concentration dependence of these diffusion coefficients reflects the effect of hard sphere and the supplementary attractive interactions. It was observed that the attractive part becomes more pronounced in the case of a large alkane chain oil at a given temperature. This explains the shift of the region of microemulsion stability to lower temperatures for higher chain length alkanes. Increase in hydrodynamic radius, Rh, obtained from the diffusion coefficient extrapolated to infinite dilution was observed with increase of alkane chain length. The polydispersity in microemulsion systems is dynamic in origin. Results indicate that the time scale for local polydispersity fluctuations is at least 3 orders of magnitude longer than the estimated time between droplet collisions.  相似文献   

16.
The self-diffusion coefficients of each of the components in mixtures containing pyridine and each of the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides in acetonitrile were determined using NMR diffusometry (i. e., Pulsed Gradient Spin Echo). The nature of solvation was found to change significantly with the proportion of salt in the mixtures. Increased diffusion coefficients (when corrected for viscosity) for the molecular components were observed with increasing proportion of ionic liquid and with increasing alkyl chain length on the cation. Comparison of the molecular solvents suggests increased interactions in solution of the pyridine with other components of the mixture, consistent with the proposed interactions shown previously to drive changes in reaction kinetics. Discontinuities were seen in the diffusion data for each species in solution across different ionic liquids between the hexyl and octyl derivatives, suggesting a change in the structuring in solution as the alkyl chain on the cation changes and demonstrating the importance of such when considering homologous series.  相似文献   

17.
The kinetics of formation of a swollen surface layer by diffusion of liquid solvent into solid poly(vinyl chloride) in the glassy state has been studied. The apparent Fickian diffusion coefficients of cyclohexanone, cyclopentanone, tetrahydropyrane, 1,2-dichloroethane, N,N-dimethyl-formamide, and monohalogen derivatives of benzene in PVC is calculated with the use of Crank's model for discontinuous change of diffusion coefficient with concentration. It is found that the apparent activation energy for diffusion is in the range 6–17 kcal/mole and is dependent on the polarity of the solvent molecule.  相似文献   

18.
The paper presents the self-diffusion coefficients calculated for liquid dichloroalkanes C6H12Cl2, C8H16Cl2, C10H22Cl2 and C12H24Cl2, with the use of the Cohen and Turnbull model. Determination of self-diffusion coefficients permits a separate analysis of intra- and intermolecular motions and provides information on geometrical and dynamical properties of molecules. The self-diffusion coefficients of selected dichloroalkanes have been determined by X-ray diffraction and compared with the corresponding NMR results. The suitability of the Cohen–Turnbull model of the translating motion for prediction of self-diffusion coefficients for molecules whose shape significantly differs from the spherical symmetry is analysed. Angular distributions of X-ray scattered intensity were measured, and differential radial distribution functions of electron density (DRDFs) were calculated. The mean coordination numbers were obtained from the area delimited by the minima of the DRDFs, and their dependence on the length of the methylene chain is also presented subsequently. On the basis of the DRDFs the average free volume of the molecules and total free volume of the liquids were calculated. The activation volume of the diffusion was found to make about 0.6 of the van der Waals volume of the molecule. As expected the diffusion coefficients decrease with increasing molecular weight. The equation relating the self-diffusion coefficient with the volume of the coordination spheres in the liquid has been derived.  相似文献   

19.
The self- and mutual diffusion coefficients for binary mixtures of Ar-Kr both in the bulk and in the nanopores were studied by molecular dynamics simulations. The composition dependences and the relationships between the self- and the mutual diffusion coefficients both in the bulk and in the nanopores were further discussed. It was found that the simulation results (D(c.m.)) are close to the calculated ones (D(s)) for the Ar-Kr system. Both self- and mutual diffusion coefficients in nanopores are much lower than that of the bulk, and they ever decrease as the pore width decreases. Nevertheless, the self- and mutual diffusion coefficients increase as the mole fraction of Ar increases, and as expected, increase as the temperature increases. The self-diffusion coefficients of mixtures both in the bulk and in the nanopores are predicted by the Carman model and by the molecular cluster model.  相似文献   

20.
Two-dimensional simple shear flow of a self-avoiding macromolecular chain is simulated by a lattice Monte Carlo (MC) method with a pseudo-potential describing the flow field. The simulated velocity profile satisfies the requirements of simple shear flow unless the shear rate is unreasonably high. Some diffusion problems for a free-draining bead-spring chain with excluded volume interaction are then investigated at low and relatively high shear rates. Three diffusion coefficients are defined and examined in this paper: the conventional self-diffusivity in zero field, Dself, the apparent self-diffusivity in flow field, Dapp, and the flow diffusivity in simulation, Dflow reflecting actually the transport coefficient. It is found that these three diffusivities for a flexible chain are different from each other. What is more important is that self-diffusion exhibits a high anisotropy in the flow field. The apparent self-diffusion along the flow direction is enhanced to a large extent. It is increased monotonically with the increase of shear time or shear strain, whereas the chain configuration can achieve a stationary anisotropic distribution following an interesting overshoot of the coil shape and size. Besides a single self-avoiding chain, an isolated Brownian bead and a group of self-avoiding beads with a quasi-Gaussian spatial distribution are also simulated. According to the comparison, the effects of the connectivity of the chain on the diffusion behavior are revealed. Some scaling relations of Dapp versus t are consistent with the theoretical analyses in the pertinent literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号