首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Numerous protocols have been developed for the functionalization of aromatic substances. Among them, the strategy by which aromatic substrates are activated in situ to generate dearomatized intermediates is highly efficient but challenging, especially in the field of asymmetric catalysis. In this Concept article, the application of some well-established chiral Lewis base catalysis, including primary/secondary amines and N-heterocyclic carbenes, that can covalently form catalyst-tethered dearomatized ortho/para-quinodimethane species with diverse heteroaryl and aryl carbonyl substrates is summarized in a number of asymmetric cycloaddition and addition reactions with diverse reagents generally having electrophilic properties. As a result, a variety of enantioenriched aromatic products with higher molecular complexity are constructed effectively through a rearomatization process.  相似文献   

2.
Ligand cooperativity provides (transition) metal complexes with new reactivities in substrate activation and catalytic reactions, but usually the ligand acts as an internal (Brønsted) base, while the metal acts as a (Lewis) acid. We describe the synthesis and stepwise activation of a new phosphane‐pyridine‐amide ligand PNNH2 in combination with RhI. The ligand is susceptible to stepwise proton and hydride loss from the nitrogen arm (imine formation) and deprotonation at the pyridylphosphine arm (dearomatization), giving rise to amine complex 1 , amido species 2 , imine complex 3 and dearomatized compound 4 . Complex 4 bears a dual‐mode cooperative PNN′ ligand containing both a (nucleophilic) basic methine fragment and a reactive (electrophilic) imine moiety. The basic ligand arm enables substrate deprotonation while the imine ligand arm enables reversible “storage” of the activated (nucleophilic) form of a sulfonamide substrate at the ligand. In combination with metal‐based reactivity, this allows for the mono‐alkylation of o‐toluenesulfonamide with iodomethane. Compounds 1 , 3 and 4 are structurally characterized. We also report the first structurally characterized example of an aminal in the coordination sphere of rhodium, complex 5 , [Rh(CO)( PNN′′ )], formed by sequential N?H activation of sulfonamide by the dearomatized ligand PNN′ and follow‐up nucleophilic attack of anionic sulfonamide onto the imine fragment.  相似文献   

3.
We are reporting on a new method of constructing dearomatized compounds from α-substituted aryltriazenes. Deprotonation occurs at C atom α to N3. Nucleophilic attack of generated anion at the ortho-position of aryl group forms a new carbon-carbon bond. A stereoselective reaction was observed when the substituents on the C α to N3 are tied together in either a pyrrolidine or a piperidine. The product of this reaction possessed an interesting dearomatized tetrahydrobenzotriazine framework.  相似文献   

4.
Transition metal complexes that exhibit metal–ligand cooperative reactivity could be suitable candidates for applications in water splitting. Ideally, the ligands around the metal should not contain oxidizable donor atoms, such as phosphines. With this goal in mind, we report new phosphine‐free ruthenium NCN pincer complexes with a central N‐heterocyclic carbene donor and methylpyridyl N‐donors. Reaction with base generates a neutral, dearomatized alkoxo–amido complex, which has been structurally and spectroscopically characterized. The tert‐butoxide ligand facilitates regioselective, intramolecular proton transfer through a C?H/O?H bond cleavage process occurring at room temperature. Kinetic and thermodynamic data have been obtained by VT NMR experiments; DFT calculations support the observed behavior. Isolation and structural characterization of a doubly dearomatized phosphine complex also strongly supports our mechanistic proposal. The alkoxo–amido complex reacts with water to form a dearomatized ruthenium hydroxide complex, a first step towards phosphine‐free metal–ligand cooperative water splitting.  相似文献   

5.
Deprotonation of bis(N-benzyl-N-methyl)-P-arylphosphonic diamides with s-BuLi in THF at -90 degrees C takes place selectively at the benzylic position. The anions undergo intramolecular attack to the P-aryl ring leading to dearomatized species that were trapped with a series of electrophiles (MeOH, ArOH, BnBr, aliphatic and aromatic aldehydes, and benzophenone) in very high yield, and with high regio- and stereocontrol. The dearomatized products were smoothly transformed into gamma-aminophosphonic acids under acidic conditions. Preliminary screening for antitumor activity showed promising levels of activity.  相似文献   

6.
Herein we describe the dearomatization of aryl iodanes through an unprecedented “rearrangement/addition” sequence. The process consists of two stages. First, a rapid [3,3] sigmatropic rearrangement of the aryl iodane with an α‐stannyl nitrile affords a highly electrophilic dearomatized intermediate at ?78 °C. A low‐temperature rearrangement then enables the unstable dearomatized species to be trapped in situ with various nucleophiles. As a consequence, the reaction not only breaks the aromaticity of the aryl iodane but also sequentially installs two different functional groups, thus resulting in a polysubstituted alicyclic product.  相似文献   

7.
An iridium‐catalyzed intramolecular asymmetric allylic dearomatization reaction of benzoxazoles, benzothiazoles, and benzimidazoles was developed. The reaction was found to be compatible with a wide range of five‐membered‐ring electron‐deficient heteroaromatic compounds and furnished the corresponding dearomatized heterocycles in high yield with excellent enantioselectivity.  相似文献   

8.
An iridium‐catalyzed intramolecular asymmetric allylic dearomatization reaction of benzoxazoles, benzothiazoles, and benzimidazoles was developed. The reaction was found to be compatible with a wide range of five‐membered‐ring electron‐deficient heteroaromatic compounds and furnished the corresponding dearomatized heterocycles in high yield with excellent enantioselectivity.  相似文献   

9.
Abstract

Herein we report the reversible activation of CO2 by the dearomatized complex [(tBuPNP*)Ir(COE)] (1) and by the aromatized complex [(tBuPNP)Ir(C6H5)] (2) via metal-ligand cooperation (MLC) (tBuPN = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine; tBuPNP* = deprotonated PNP; COE = cyclooctadiene). The [1,3]-addition of CO2 to 1 and 2 is reversible at ambient temperature. While the dearomatized complex 1 reacts readily at ambient temperature with CO2 in THF or benzene, complex 2 reacts with CO2 upon heating in benzene at 80 °C or at ambient temperature in THF. The novel aromatized complex [(tBuPNP)IrCl] (10) does not react with CO2. Based on the reactivity patterns of 1, 2, and 10 with CO2, we suggest that CO2 activation via MLC takes place only via the dearomatized species, and that in the case of 2 THF plays a role as a polar solvent in facilitating formation of the dearomatized hydrido phenyl complex intermediate (complex II).  相似文献   

10.
Spirocyclohexa-2,5-dienes were shown to rearrange at -40 degrees C, when treated with 1 equiv of LDA. Alkyl halides and aldehydes then reacted with the resulting phenanthridinone lithium enolate intermediates, with distinct regioselectivities and high diastereocontrol, to afford functionalized dearomatized phenanthridinones which were elaborated further. A mechanistic scheme involving a diisopropylamine-mediated proton transfer was proposed to rationalize the rearrangement.  相似文献   

11.
Owing to its unique physical properties, fluorine is often used to open up new reaction channels. In this report, we establish a cooperation of [5,5]-rearrangement and fluorine-assisted temporary dearomatization for arene multi-functionalization. Specifically, the [5,5]-rearrangement of fluoroaryl sulfoxides with β,γ-unsaturated nitriles generates an intriguing dearomatized sulfonium species which is short-lived but exhibits unusually high electrophilicity and thus can be instantly trapped by nucleophiles and dienes at a remarkably low temperature (−95 °C) to produce four types of valuable multi-functionalized benzenes, respectively, involving appealing processes of defluorination, desulfurization, and sulfur shift. Mechanistic studies indicate that the use of fluorine on arenes not only circumvents the generally inevitable [3,3]-rearrangement but also impedes the undesired rearomatization process, thus provides a precious space for constructing and elaborating the temporarily dearomatized fluorinated sulfonium species.  相似文献   

12.
Herein we describe the dearomatization of aryl sulfoxides with difluoroenol silyl ether (DFESE) using a rearrangement/addition protocol. The selection of the sulfoxide activator determines whether one or two difluoroalkyl groups are incorporated into dearomatized products. Using TFAA can deliberately halt the reaction at the mono-difluoroalkylated dearomatized intermediate formed via a [3,3]-rearrangement, which can be further trapped by external nucleophiles to give mono-difluoroalkylated alicycles. In contrast, switching to Tf2O enhances the electrophilicity of dearomatized intermediates, thus allowing for the adoption of a second DFESE to produce dual-difluoroalkylated alicycles.

Herein we describe the dearomatization of aryl sulfoxides with difluoroenol silyl ether (DFESE) using a rearrangement/addition protocol.  相似文献   

13.
3-Nitroindoles are easily reacted with highly substituted γ-allenoates in the presence of a commercially available phosphine catalyst. For instance, allenoates derived from biomolecules such as amino and deoxycholic acids are combined for the first time with 3-nitroindole. The corresponding dearomatized (3+2) tricyclic cycloadducts are obtained as α-regioisomers exclusively. DFT computations shed light on this multi-step reaction mechanism and on the selectivities observed in the sequence.  相似文献   

14.
[reaction: see text] gamma-Lithiopropylnaphthalenes and their oxa- and aza-tethered analogues cyclize by nucleophilic addition of the organolithium to the naphthalene ring. The resulting benzyllithiums react stereoselectively with electrophiles to give dearomatized tricyclic products with structural similarity to the arylnaphthalene lignans.  相似文献   

15.
Three anthracene-based cyclophanes were synthesized and their binding properties towards nucleoside triphosphates were studied. A new polycyclic amine derived from dearomatized anthracene was identified as a major side product in the cyclization reaction between 9,10-anthracenedicarboxaldehyde and diethylenetriamine. Its structure was determined by single-crystal X-ray analysis. The cyclophanes were found to form 1:1 complexes with all nucleoside triphosphates as well as with pyrophosphate in a buffered aqueous solution at pH 6.2. A turn-on fluorescence response was observed for all nucleotides except for GTP, which demonstrated strong fluorescence quenching. The strongest turn-on fluorescence was observed for the largest receptor 3 in the presence of thymidine triphosphate (TTP). Based on the NMR and fluorescence experiments, two major binding modes for nucleotide complexes were identified.  相似文献   

16.
Unusual reactions are reported, in which the aromatic PNP ligand (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) acts in concert with the metal in the activation of H2 and benzene, via facile aromatization/dearomatization processes of the ligand. A new, dearomatized electron-rich (PNP*)Ir(I) complex 2 (PNP* = deprotonated PNP) activates benzene to form the aromatic (PNP)Ir(I)Ph 4, which upon treatment with CO undergoes a surprising oxidation process to form (PNP*)Ir(III)(H)CO 6, involving proton migration from the ligand "arm" to the metal, with concomitant dearomatization. 4 undergoes stereoselective activation of H2 to exclusively form the trans-dihydride 7, rather than the expected cis-dihydride complex. Our evidence, including D-labeling, suggests the possibility that the Ir(I)-Ph complex is transformed to the dearomatized Ir(III)(Ph)(H) (independently prepared at low temperature), which may be the actual intermediate undergoing H2 activation.  相似文献   

17.
The coordination of transition metals to organic fragments can yield complexes with fascinating and unexpected binding patterns. The study of metal‐benzyl complexes has demonstrated the feasibility of η3‐coordination, which results in a dearomatized ring. These complexes also offer insight into reaction mechanisms as proposed intermediates in catalytic cycles. In this Review we discuss the synthesis and characterization of these complexes with late transition metals and the subsequent development of catalytic benzylic functionalization methods, including asymmetric variants.  相似文献   

18.
A family of cationic boron complexes was synthesized, using a dianilidopyridine pincer ligand, which imposes in-plane distortion of the geometry at boron towards T-shaped. Reactivity of these cations toward hydride and base was investigated, and the utility of these cations as precursors to a variety of π-conjugated BN heterocycles was demonstrated. 300 nm irradiation of a deprotonated pincer boron complex triggered a C−N cleavage/C−C formation yielding a dearomatized boryl imine, which has a structure akin to the long-proposed intermediate in the photochemical Hofmann–Martius rearrangement. The photo-rearrangement triggers relief of the distortion imposed by the pincer ligand.  相似文献   

19.
An unprecedented dearomatized spirocyclopropane intermediate was discovered in a sequential Cp*RhIII‐catalyzed C?H activation and Wagner–Meerwein‐type rearrangement reaction. How the oxidative O?N bond is cleaved and the role of HOAc were uncovered in this study. Furthermore, a Cp*RhIII‐catalyzed dearomatization reaction of N‐(naphthalen‐1‐yloxy)acetamide with strained olefins was developed, affording a variety of spirocyclopropanes.  相似文献   

20.
A nonsymmetrical hybrid spacer PONNP pincer ligand is synthesized and fully characterized. The dearomatized PONNP* pincer nickel chloride reacts with silver triflate to generate a unique Ni–Ag bimetallic complex ( 5 ). Single‐crystal analysis shows a silver–silver distance of 2.693 Å, which is shorter than the typical metallic silver–silver bond length of 2.889 Å, suggesting an argentophilic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号