首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of 1,3‐bis(N‐heterocyclic)carbene ligands with different alkyl wingtip groups (alkyl = methyl, isopropyl and tert ‐butyl) is an effective method for the palladium‐catalysed direct S ‐arylation of methylphenyl sulfoxide and C–C coupling of various of aryl halides with alkenes. The reactions proceed in moderate to good yields. Interestingly, it is shown experimentally that, by using bulkier bidentate N‐heterocyclic carbene ligands, more selective catalytic systems towards cis products in Heck coupling reactions can be achieved.  相似文献   

2.
The first broadly applicable set of protocols for efficient Z‐selective formation of macrocyclic disubstituted alkenes through catalytic ring‐closing metathesis (RCM) is described. Cyclizations are performed with 1.2–7.5 mol % of a Mo‐ or W‐based monoaryloxide pyrrolide (MAP) complex at 22 °C and proceed to complete conversion typically within two hours. Utility is demonstrated by synthesis of representative macrocyclic alkenes, such as natural products yuzu lactone (13‐membered ring: 73 % Z) epilachnene (15‐membered ring: 91 % Z), ambrettolide (17‐membered ring: 91 % Z), an advanced precursor to epothilones C and A (16‐membered ring: up to 97 % Z), and nakadomarin A (15‐membered ring: up to 97 % Z). We show that catalytic Z‐selective cyclizations can be performed efficiently on gram‐scale with complex molecule starting materials and catalysts that can be handled in air. We elucidate several critical principles of the catalytic protocol: 1) The complementary nature of the Mo catalysts, which deliver high activity but can be more prone towards engendering post‐RCM stereoisomerization, versus W variants, which furnish lower activity but are less inclined to cause loss of kinetic Z selectivity. 2) Reaction time is critical to retaining kinetic Z selectivity not only with MAP species but with the widely used Mo bis(hexafluoro‐tert‐butoxide) complex as well. 3) Polycyclic structures can be accessed without significant isomerization at the existing Z alkenes within the molecule.  相似文献   

3.
The gold carbene generated from vinylidenecyclopropanes (VDCPs) can smoothly perform a C(sp3)?H bond insertion reaction, stereoselectively affording the intramolecular C(sp3)?H bond functionalized product, benzoxepine, with syn‐configuration in moderate to good yields under mild conditions. The KIE investigation on this bond functionalization partially revealed that the carbene insertion step might be rate‐determining. Using a chiral gold(I) catalyst, the first example on the asymmetric variant of gold carbene insertion into C(sp3)?H bond has been disclosed, giving the desired products with excellent results.  相似文献   

4.
Cu‐catalyzed alkylboration of alkenes with bis(pinacolato)diboron ((Bpin)2) and alkyl halides provides a ligand‐controlled regioselectivity‐switchable method for the construction of complex boron‐containing compounds. Here, we employed DFT methods to elucidate the mechanistic details of this reaction and the origin of the different regioselectivity induced by Xantphos and Cy‐Xantphos. The calculation results reveal that the catalytic cycle mainly proceeds through the migratory insertion of alkenes on Cu‐Bpin complex, the oxidative addition of alkyl halides, and the reductive elimination of a C?C bond. Meanwhile, the rate‐ determining step is the oxidative addition of alkyl halides and the regioselectivity‐determining step is the migratory insertion of alkenes. The bulky cyclohexyl group of Cy‐Xantphos facilitates the approach of the substituents of alkenes to Bpin in the migratory insertion step and thus leads to the Markovnikov products. The less bulky phenyl group on Xantphos prefers keeping the substituents of alkenes away from the Bpin moiety in the migratory insertion step and thus results in anti‐Markovnikov products.  相似文献   

5.
Herein, we report the B(C6F5)3-catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.  相似文献   

6.
The first catalytic enantioselective γ‐boryl substitution of CF3‐substituted alkenes is reported. A series of CF3‐substituted alkenes was treated with a diboron reagent in the presence of a copper(I)/Josiphos catalyst to afford the corresponding optically active γ,γ‐gem‐difluoroallylboronates in high enantioselectivity. The thus obtained products could be readily converted into the corresponding difluoromethylene‐containing homoallylic alcohols using highly stereospecific allylation reactions.  相似文献   

7.
Metal catalysis has revolutionized synthetic chemistry, leading to entirely new, very efficient transformations, which enable access to complex functionalized molecules. One such new transformation method is the haloalkynylation reaction, in which both a halogen atom and an alkynyl unit are transferred to an unsaturated carbon-carbon bond. This minireview summarizes the development of metal-catalyzed haloalkynylation reactions since their beginning about a decade ago. So far, arynes, alkenes and alkynes have been used as unsaturated systems and the reactivities of these systems are summarized in individual chapters of the minireview. Especially, the last few years have witnessed a rapid development due to gold-catalyzed reactions. Here, we discuss how the choice of the catalytic system influences the regio- and stereoselectivity of the addition.  相似文献   

8.
Herein we report a versatile Mizoroki–Heck-type photoinduced C(sp3)−N bond cleavage reaction. Under visible-light irradiation (455 nm, blue LEDs) at room temperature, alkyl Katritzky salts react smoothly with alkenes in a 1:1 molar ratio in the presence of 1.0 mol % of commercially available photoredox catalyst without the need for any base, affording the corresponding alkyl-substituted alkenes in good yields with broad functional-group compatibility. Notably, the E/Z-selectivity of the alkene products can be controlled by an appropriate choice of photoredox catalyst.  相似文献   

9.
Gold(I)‐catalyzed regioselective cycloisomerizations of furan‐ynes have been described. The reaction provides a concise access to stereodefined trisubstituted alkenes by endo cyclization with concomitant 1,5‐migration of the furanyl group in the presence of unactivated 3 Å molecular sieves. In the absence of molecular sieves, indene products are generated by exo cyclization, followed by 1,4‐furanyl migration/cyclization. The scope for 1,5‐migrations can be extended to other heterocycles, such as benzofurans, thiophenes, and pyrroles.  相似文献   

10.
Using potassium iodide as a catalyst and m-chloroperbenzoic acid as an oxidant, an efficient catalytic procedure has been developed for the azidoselenenylation of alkenes with sodium azide and diselenides, and a series of corresponding β-azidoselenides, most of which are new compounds, have been prepared in moderate to good yields under mild reaction conditions. This in situ generation of the electrophilic selenenylating reagents with addition to alkenes is a stereospecific anti addition, which occurs with a Markovnikov orientation.  相似文献   

11.
The stereoselective hydrogenation of alkynes to alkenes is an extremely useful transformation in synthetic chemistry. Despite numerous reports for the synthesis of Z‐alkenes, the hydrogenation of alkynes to give E‐alkenes is still not well resolved. In particular, selective preparation of both Z‐ and E‐alkenes by the same catalytic hydrogenation system using molecular H2 has rarely been reported. In this paper, a novel strategy of using simple alkenes as promoters for the HB(C6F5)2‐catalyzed metal‐free hydrogenation of alkynes was adopted. Significantly, both Z‐ and E‐alkenes can be furnished by hydrogenation with molecular H2 in high yields with excellent stereoselectivities. Further experimental and theoretical mechanistic studies suggest that interactions between H and F atoms of the alkene promoter, borane intermediate, and H2 play an essential role in promoting the hydrogenolysis reaction.  相似文献   

12.
Alonso  F.  Radivoy  G.  Yus  M. 《Russian Chemical Bulletin》2003,52(12):2563-2576
The reducing system NiCl2·2H2O—Li—arenecat (cat is catalyst) was proposed for use to reduce a wide range of organic compounds, including alkenes, alkynes, carbonyl compounds, imines, halogenated derivatives, sulfonates, aromatic compounds, hydrazines, azo and azoxy compounds, N-oxides, and nitrones. The degree of reduction can be controlled for some substrates. Deuterium can be incorporated in the reaction products using nickel chloride deuteriohydrate. Nitrones, N-alkoxyamides, and acyl azides are also reduced with the Li—arenecat system containing no nickel salt.  相似文献   

13.
The development of environmentally benign catalysts for highly enantioselective asymmetric cis‐dihydroxylation (AD) of alkenes with broad substrate scope remains a challenge. By employing [FeII(L)(OTf)2] (L=N,N′‐dimethyl‐N,N′‐bis(2‐methyl‐8‐quinolyl)‐cyclohexane‐1,2‐diamine) as a catalyst, cis‐diols in up to 99.8 % ee with 85 % isolated yield have been achieved in AD of alkenes with H2O2 as an oxidant and alkenes in a limiting amount. This “[FeII(L)(OTf)2]+H2O2” method is applicable to both (E)‐alkenes and terminal alkenes (24 examples >80 % ee, up to 1 g scale). Mechanistic studies, including 18O‐labeling, UV/Vis, EPR, ESI‐MS analyses, and DFT calculations lend evidence for the involvement of chiral FeIII‐OOH active species in enantioselective formation of the two C?O bonds.  相似文献   

14.
Some analogies between organometallic chemistry and surface chemistry are developed. Comparison of Lewis acid promoted CO insertion and Zn2+ promotion of oxygenates in the hydroformylation of C2H4 over Rh, suggests that Zn2+ interaction with Rh-CO may promote migratory insertion which favors hydroformylation over hydrogenation of alkenes. CCO, which is observed in metal clusters should be a viable surface species. Finally, parallels can be found between the positioning of oxygen in clusters and on surfaces.  相似文献   

15.
Catalytic transfer hydrodeuteration of unactivated alkenes is challenging because of the requirement that chemically similar hydrogen and deuterium undergo selective insertion across a π-bond. We now report a highly regioselective catalytic transfer hydrodeuteration of unactivated terminal alkenes across a variety of heteroatom- or heterocycle-containing substrates. The base-metal-catalyzed reaction is also demonstrated on two complex natural products. Reaction studies indicate modular conditions that can also be extended to perform either an alkene transfer hydrogenation or transfer deuteration.  相似文献   

16.
Dual photoredox- and nickel-catalyzed hydroalkylation of terminal alkynes with 4-alkyl-1,4-dihydropyridines under visible light irradiation to afford Markovnikov- or anti-Markovnikov-type alkylated alkenes in good-to-high yields has been achieved, in which the regioselectivity of the products was effectively controlled by coordination ligands for nickel species. Using [NiCl2(dtbbpy)] as a catalyst led to the formation of Markovnikov-type products, whereas using NiCl2 ⋅ 6 H2O led to the formation of anti-Markovnikov-type products.  相似文献   

17.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π-activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5-, 6-, and 7-membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron-rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5-exo to 6-endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

18.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π‐activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5‐, 6‐, and 7‐membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron‐rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5‐exo to 6‐endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

19.
Chiral N,N′‐dioxide/Zn(NTf2)2 complexes were demonstrated to be highly effective in the direct asymmetric conjugate addition of arylacetonitriles to alkylidene malonates under mild conditions. A wide range of substrates were tolerated to afford their corresponding products in moderate‐to‐good yields with high diastereoselectivities (82:18–>99:1 d.r.) and enantioselectivities (81–99 % ee). The reactions performed well, owing to the high Lewis acidity of the metal triflimidate and a ligand‐acceleration effect. The N,N′‐dioxide also benefited the deprotonation process as a Brønsted base. The catalytic reaction could be performed on the gram‐scale with retention of yield, diastereoselectivity, and enantioselectivity. The products that contained functional groups were ready for further manipulation. In addition, a possible catalytic model was proposed to explain the origin of the asymmetric induction.  相似文献   

20.
Herein, the first example of chloropalladation‐initiated asymmetric intermolecular carboesterification of alkenes with alkynes by using chiral amine auxiliaries is reported. The use of (1S,2S)‐N1,N1‐dimethylcyclohexane‐1,2‐diamine auxiliaries is essential for providing α‐methylene‐γ‐lactones products in moderate to high yields and excellent enantioselectivities at room temperature. Moreover, the chiral amine auxiliaries can be readily removed by hydrolysis during the reaction process to keep the absolute configuration. This oxygen‐ and water‐promoted asymmetric reaction opens a new window to study asymmetric processes in halopalladation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号