首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 2-aminobiphenyl palladacycles supported by dialkylterphenyl phosphines, PR2Ar′ (R=Me, Et, iPr, Cyp (cyclopentyl), Ar′=ArDipp2, ArXyl2f, Dipp (2,6-C6H3-(2,6-C6H3-(CHMe2)2)2), Xyl=xylyl) have been prepared and structurally characterized. Neutral palladacycles were obtained with less bulky terphenyl phosphines (i.e., Me and Et substituents) whereas the largest phosphines provided cationic palladacycles in which the phosphines adopted a bidentate hemilabile k1-P,η1-Carene coordination mode. The influence of the ligand structure on the catalytic performance of these Pd precatalysts was evaluated in aryl amination reactions. Cationic complexes bearing the phosphines PiPr2ArXyl2 and PCyp2ArXyl2 were the most active of the series. These precatalysts have demonstrated a high versatility and efficiency in the coupling of a variety of nitrogen nucleophiles, including secondary amines, alkyl amines, anilines, and indoles, with electronically deactivated and ortho-substituted aryl chlorides at low catalyst loadings (0.25–0.75 mol % Pd) and without excess ligand.  相似文献   

2.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

3.
A series of 2,6-dibenzhydryl substituted bulky Ni and Pd complexes containing P,N-chelating ligands, {[2,6-(Ph2CH)2-4-R-C6H2-N=CH-C6H4-2-PPh2]MX2; MX2 =NiBr2; R = Me ( Ni1 ); R = F ( Ni2 ); MX2 =PdCl2, R = Me ( Pd1 )}, have been prepared and used as catalyst precursors for ethylene oligo-/polymerization. Compared to the corresponding 2,6-diisopropyl Ni catalyst, these bulky Ni precatalysts activated by Et2AlCl exhibited excellent catalytic performance toward ethylene polymerization with activity of up to 1.90 × 105 g PE (mol Ni)−1 h−1, and result in semicrystalline PEs with high molecular weight. The catalytic performance of these bulky P,N-type complexes was significantly improved by introducing two ortho-dibenzhydryl on the N-aryl substituents. However, the formation of C10–C24 oligomers were generated using their palladium catalysts through ethylene oligomerization at high temperatures.  相似文献   

4.
Rhodium(I) catalysts incorporating small bite‐angle diphosphine ligands, such as (Cy2P)2NMe or bis(diphenylphosphino)methane (dppm), are effective at catalysing the union of aldehydes and propargylic amines to deliver the linear hydroacylation adducts in good yields and with high selectivities. In situ treatment of the hydroacylation adducts with p‐TSA triggers a dehydrative cyclisation to provide the corresponding pyrroles. The use of allylic amines, in place of the propargylic substrates, delivers functionalised dihydropyrroles. The hydroacylation reactions can also be combined in a cascade process with a RhI‐catalysed Suzuki‐type coupling employing aryl boronic acids, providing a three‐component assembly of highly substituted pyrroles.  相似文献   

5.
Two new phosphinite ligands based on ionic liquids [(Ph2PO)C7H14N2Cl]Cl ( 1 ) and [(Cy2PO)C7H14N2Cl]Cl ( 2 ) were synthesized by reaction of 1‐(3‐chloro‐2‐hydoxypropyl)‐3‐methylimidazolium chloride, [C7H15N2OCl]Cl, with one equivalent of chlorodiphenylphosphine or chlorodicyclohexylphosphine, respectively, in anhydrous CH2Cl2 and under argon atmosphere. The reactions of 1 and 2 with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) yield complexes cis‐[M([(Ph2PO)C7H14N2Cl]Cl)2Cl2] and cis‐[M(Cy2PO)C7H14N2Cl]Cl)2Cl2], respectively. All complexes were isolated as analytically pure substances and characterized using multi‐nuclear NMR and infrared spectroscopies and elemental analysis. The catalytic activity of palladium complexes based on ionic liquid phosphinite ligands 1 and 2 was investigated in Suzuki cross‐coupling. They show outstanding catalytic activity in coupling of a series of aryl bromides or aryl iodides with phenylboronic acid under the optimized reaction conditions in water. The complexes provide turnover frequencies of 57 600 and 232 800 h?1 in Suzuki coupling reactions of phenylboronic acid with p‐bromoacetophenone or p‐iodoacetophenone, respectively, which are the highest values ever reported among similar complexes for Suzuki coupling reactions in water as sole solvent in homogeneous catalysis. Furthermore, the palladium complexes were also found to be highly active catalysts in the Heck reaction affording trans‐stilbenes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The complexes Cp(MeIm)IrI2 and CpMe4(MeIm)IrCl2 have been prepared and subsequently methylated to form Cp(MeIm)IrMe2 and CpMe4(MeIm)IrMe2 (Cp=η5-C5H5, CpMe45-C5HMe4, MeIm=1,3-dimethylimidazol-2-ylidene). We attempted unsuccessfully to use the dimethyl complexes to study C−D bond activation via methyl-group abstraction. Protonation with one equivalent of a weak acid, such as 2,6-dimethylpyridinium chloride, affords methane and IrIII methyl chloride complexes. 1H-NMR experiments show addition of pyridinium [BArF20] (BArF20=[B(C6F5)4]) to the dimethyl species forms [Cp(MeIm)IrMe(py)]+[BArF20] (py=pyridine) or [CpMe4(MeIm)IrMe(py)]+[BArF20] respectively, alongside methane, while use of the [BArF20] salts of more bulky 2,6-dimethylpyridinium and 2,6-di-tert-butylpyridinium gave an intractable mixture. Likewise, the generation of 16 e species [CpMe4(MeIm)IrMe]+[BArF20] or [Cp(MeIm)IrMe]+[BarF20] at low temperature using 2,6-dimethylpyridinium or 2,6-di-tert-butylpyridinium in thawing C6D6 or toluene-d8 formed an intractable mixture and did not lead to C−D bond activation. X-ray structures of several IrIII complexes show similar sterics as that found for the previously reported Cp* analogue.  相似文献   

7.
Palladium(II) complexes of aryl dithiolates and wide-bite-angle diphosphines Xantphos and dppf have been developed as efficient catalysts in Suzuki and Suzuki carbonylation reactions. The catalytic activity of these highly stable, discrete and charged complexes was investigated in Heck coupling reactions of styrene and a variety of aryl bromides. Under optimized reaction conditions these palladium complexes showed excellent activity with high turnover number (6 × 106) and high turnover frequency (4 × 105 h−1). The effect of bite angle of diphosphines on the catalytic activity of the complexes [Pd2(PP)2(SC12H8S)]2(OTf)4 followed the trend PP = Xantphos > dppf > dppe as the order of their bite angles. The catalyst could be reused, and after three cycles the formation of significant amount of Pd nanoparticles was noticed, which were characterized using powder X-ray diffraction, energy-dispersive X-ray analysis and transmission electron microscopy. The high catalytic activity has been attributed to the Pd nanoparticles.  相似文献   

8.
Palladium ate complexes are frequently invoked as important intermediates in Heck and cross‐coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray‐ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron‐poor catalyst [L3Pd] (L=tris[3,5‐bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br ions to afford the anionic, zero‐valent ate complex [L3PdBr]. In contrast, more‐electron‐rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L3Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the PdII ate complex [L2Pd(Ar)I2].  相似文献   

9.
By applying the potassium salts of cyclopentadienyl-phosphine ligands LK to CoCl2, the corresponding cobalt chlorides ( 1 , L CoIICl) were prepared. By reducing complexes 1 with KHBEt3 under a N2 atmosphere, bridging end-on complexes, L CoI−N2−CoI L ( 2 a and 2 b ), were successfully obtained. 15N2-labeled [15N2]- 2 a was prepared under 15N2/14N2 exchange in THF solution. L CoI−N2−CoI L complex 2 a could react with P4 molecules to release N2 and generate a Co−P4−Co moiety 4 . Further reduction of complex 2 b led to cleavage of a P−C bond in the cyclopentadienyl-phosphine ligand to provide novel μ-PCy2-bridged Co0−N2 complex 5 . DFT calculations confirmed the experimental observations.  相似文献   

10.
Building upon previous work, the chemistry of [(η6-p-cymene)Ru{P(OMe)2OR}Cl2], (R=H or Me) has been extended with [H2B(mbz)2] (mbz=2-mercaptobenzothiazolyl) using different Ru precursors and borate ligands. As a result, a series of 1,3-N,S-chelated ruthenium borate complexes, for example, [(κ2-N,S-L)PR3Ru{κ3-H,S,S’−H2B(L)2}], ( 2 a – d and 2 a’ – d’ ; R=Ph, Cy, OMe or OPh and L=C5H4NS or C7H4NS2) and [Ru{κ3-H,S,S’-H2B(L)2}2], ( 3 : L=C5H4NS, 3’ : L=C7H4NS2) were isolated upon treatment of [(η6-p-cymene)RuCl2PR3], 1 a – d (R=Ph, Cy, OMe or OPh) with [H2B(mp)2] or [H2B(mbz)2] ligands (mp=2-mercaptopyridyl). All the Ru borate complexes, 2 a – d and 2 a’ – d’ are stabilized by phosphine/phosphite and hemilabile N,S-chelating ligands. Treatment of these Ru borate species, 2 a’ – c’ with various terminal alkynes yielded two different types of five-membered ruthenacycle species, namely [PR3{C7H4S2-(E)-N-C=CH(R ’ )}Ru{κ3-H,S,S ’ −H2B(L)2}], ( 4 – 4’ ; R=Ph and R ’ =CO2Me or C6H4NO2; L=C7H4NS2) and [PR3{C7H4NS-(E)-S-C=CH(R ’ )}Ru{κ3-H,S,S ’ −H2B(L)2}], ( 5 – 5’ , 6 and 7 ; R=Ph, Cy or OMe and R ’ =CO2Me or C6H4NO2; L=C7H4NS2). All these five-membered ruthenacycle species contain an exocyclic C=C moiety, presumably formed by the insertion of a terminal alkyne into the Ru−N and Ru−S bonds. The new species have been characterized spectroscopically and the structures were further confirmed by single-crystal X-ray diffraction analysis. Theoretical studies and chemical-bonding analyses established that charge transfer occurs from phosphorus to ruthenium center following the trend PCy3<PPh3<P(OPh)3<P(OMe)3.  相似文献   

11.
A new catalytic system based on Pd-simple amines for Suzuki coupling reactions of aryl bromides is described. A well-defined air-stable complex, trans-Pd(OAc)2(Cy2NH)2 effectively promotes Suzuki couplings of aryl bromides with a range of aryl boronic acids to give diaryl products in high yields. It also exhibits temperature-dependent activity toward aryl bromides bearing different electronic substituents under reaction conditions.  相似文献   

12.
Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at −78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTf in ≥85±5 % yield according to 1H NMR analysis. 13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTf reacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom.  相似文献   

13.
The selective forging of carbon-boron bonds via C−H borylation stands as a central means to access fine chemical precursors. Notwithstanding, achieving selectivity in this reaction is difficult, calling for the design of molecular catalysts that offer a vector for mechanistic control. This report aims to achieve such through the strategic placement of Lewis acids in the ligand periphery, permitting engagement with a substrate through non-covalent Lewis acid/base interactions. Various diphosphine iridium(I/III) complexes having 1,2-bis(di-n-propylphosphino)ethane) (dnppe), tetrakisallylphosphinoethane (tape) and 1,2-bis(di(3-dicyclohexylboranyl)propylphosphino)ethane (P2BCy4) ligands were prepared. The P2BCy4 ligand scaffold boasts four Lewis acidic boron groups in its secondary coordination sphere, which are shown to engage with N-heterocycles, tape is the precursor to P2BCy4, and dnppe is a saturated n-propyl analogue devoid of boron functionality. Select combinations of such iridium salts/diphosphine ligands were assayed in the catalytic borylation of 2-methylpyridine using B2Pin2 (Pin=pinacol).  相似文献   

14.
We report an unprecedented catalytic protocol for the enantioselective decarbonylative transformation of aryl aldehydes. In this process, the decarbonylation of aldehydes catalyzed by chiral iridium complexes enabled the formation of asymmetric C−C bonds through the formation of an aryl−iridium intermediate. The decarbonylative aryl addition to bicyclic alkenes was fluidly performed without a stoichiometric aryl−metal reagent, such as aryl boronic acid, with a cationic iridium complex generated in situ from Ir(cod)2(BArF4) and the sulfur-linked bis(phosphoramidite) ligand ((R,R)-S−Me−BIPAM). This reaction has broad functional group compatibility, and no waste is generated, except carbon monoxide.  相似文献   

15.
Chalcogen-bonded silicon phosphinidenes LSi(E)−P−MecAAC (E=S ( 1 ); Se ( 2 ); Te ( 3 ); L=PhC(NtBu)2; MecAAC=C(CH2)(CMe2)2N-2,6-iPr2C6H3)) were synthesized from the reactions of silylene–phosphinidene LSi−P−MecAAC ( A ) with elemental chalcogens. All the compounds reported herein have been characterized by multinuclear NMR, elemental analyses, LIFDI-MS, and single-crystal X-ray diffraction techniques. Furthermore, the regeneration of silylene–phosphinidene ( A ) was achieved from the reactions of 2 – 3 with L′Al (L′=HC{(CMe)(2,6-iPr2C6H3N)}2). Theoretical studies on chalcogen-bonded silicon phosphinidenes indicate that the Si−E (E=S, Se, Te) bond can be best represented as charge-separated electron-sharing σ-bonding interaction between [LSi−P−MecAAC]+ and E. The partial double-bond character of Si−E is attributed to significant hyperconjugative donation from the lone pair on E to the Si−N and Si−P σ*-molecular orbitals.  相似文献   

16.
《Polyhedron》1999,18(23):2951-2959
A group of five new ruthenium(II) bipyridine heterochelates of the type [RuII(bpy)2L]+ 1a1e have been synthesized (bpy=2,2′-bipyridine; L=anionic form of the thiol-based imine ligands, HS–C6H4NC(H)C6H4(R) (R=OMe, Me, H, Cl, NO2). The complexes 1a1e are 1:1 conducting and diamagnetic. The complexes 1a1e exhibit strong MLCT transitions in the visible region and intra-ligand transitions in the UV region. In acetonitrile solvent complexes show a reversible ruthenium(III)–ruthenium(II) couple in the range 0.2–0.4 V and irreversible ruthenium(III)→ruthenium(IV) oxidation in the range 1.15–1.73 V vs. SCE. Two successive bipyridine reductions are observed in the ranges −1.43 to −1.57 and −1.67 to −1.78 V vs. SCE. The complexes are susceptible to undergo stereoretentive oxidations to the trivalent ruthenium(III) congeners. The isolated one-electron paramagnetic ruthenium(III) complex, 1c+ exhibits weak rhombic EPR spectrum at 77 K (g1=2.106, g2=2.093, g3=1.966) in 1:1 chloroform–toluene. The EPR spectrum of 1c+ has been analyzed to furnish values of distortion parameters (Δ=8988 cm−1; V=0.8833 cm−1) and energy of the expected ligand field transitions (ν1=1028 nm and ν2=1186 nm) within the t2 shell. One of the ligand field transitions has been experimentally observed at 1265 nm.  相似文献   

17.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

18.
The harsh working environments of proton exchange membrane fuel cells (PEMFCs) pose huge challenges to the stability of Pt-based alloy catalysts. The widespread presence of metallic bonds with significantly delocalized electron distribution often lead to component segregation and rapid performance decay. Here we report L10−Pt2CuGa intermetallic nanoparticles with a unique covalent atomic interaction between Pt−Ga as high-performance PEMFC cathode catalysts. The L10−Pt2CuGa/C catalyst shows superb oxygen reduction reaction (ORR) activity and stability in fuel cell cathode (mass activity=0.57 A mgPt−1 at 0.9 V, peak power density=2.60/1.24 W cm−2 in H2-O2/air, 28 mV voltage loss at 0.8 A cm−2 after 30 000 cycles). Theoretical calculations reveal the optimized adsorption of oxygen intermediates via the formed biaxial strain on L10−Pt2CuGa surface, and the durability enhancement stems from the stronger Pt−M bonds than those in L11−PtCu resulted from Pt−Ga covalent interactions.  相似文献   

19.
The aluminum(I) compound NacNacAl (NacNac=[ArNC(Me)CHC(Me)NAr], Ar=2,6-iPr2C6H3, 1 ) shows diverse and substrate-controlled reactivity in reactions with N-heterocycles. 4-Dimethylaminopyridine (DMAP), a basic substrate in which the 4-position is blocked, induces rearrangement of NacNacAl by shifting a hydrogen atom from the methyl group of the NacNac backbone to the aluminum center. In contrast, C−H activation of the methyl group of 4-picoline takes place to produce a species with a reactive terminal methylene. Reaction of 1 with 3,5-lutidine results in the first example of an uncatalyzed, room-temperature cleavage of an sp2 C−H bond (in the 4-position) by an AlI species. Another reactivity mode was observed for quinoline, which undergoes 2,2′-coupling. Finally, the reaction of 1 with phthalazine produces the product of N−N bond cleavage.  相似文献   

20.
In this research, highly efficient heterogeneous bifunctional (BF) electrocatalysts (ECs) have been strategically designed by Fe coordination (CR) complexes, [Fe2L2(H2O)2Cl2] (C1) and [Fe2L2(H2O)2(SO4)].2(CH4O) (C2) where the high seven CR number synergistically modifies the electronic environment of the Fe centre for facilitation of H2O electrolysis. The electronic status of Fe and its adjacent atomic sites have been further modified by the replacement of −Cl in C1 by −SO42− in C2 . Interestingly, compared to C1 , the O−S−O bridged C2 reveals superior BF activity with extremely low overpotential (η) at 10 mA cm−2 (140 mVOER, 62 mVHER) and small Tafel slope (120.9 mV dec−1OER, 45.8 mV dec−1HER). Additionally, C2 also facilitates a high-performance alkaline H2O electrolyzer with cell voltage of 1.54 V at 10 mA cm−2 and exhibits remarkable long-term stability. Thus, exploration of the intrinsic properties of metal–organic framework (MOF)-based ECs opens up a new approach to the rational design of a wide range of molecular catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号