首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The methylgermylene species (HGeCH3; X1A′) has been synthesized via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with germane (GeH4) under single collision conditions in crossed molecular beams experiments. Augmented by electronic structure calculations, this elementary reaction was found to proceed through barrierless insertion of the methylidyne radical in one of the four germanium-hydrogen bonds on the doublet potential energy surface yielding the germylmethyl (CH2GeH3; X2A′) collision complex. This insertion is followed by a hydrogen shift from germanium to carbon and unimolecular decomposition of the methylgermyl (GeH2CH3; X2A′) intermediate by atomic hydrogen elimination leading to singlet methylgermylene (HGeCH3; X1A′). Our investigation provides a glimpse at the largely unknown reaction dynamics and isomerization processes of the carbon-germanium system, which are quite distinct from those of the isovalent carbon system thus providing insights into the intriguing chemical bonding of organo germanium species on the most fundamental, microscopic level.  相似文献   

2.
The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with 1,3-butadiene (CH2CHCHCH2; X1Ag) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol−1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon−carbon double bond of 1,3-butadiene, leading to doublet C5H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol−1. Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.  相似文献   

3.
The mechanism of the unimolecular isomerisation reaction of the silicon and germanium analogues of bicyclo[1.1.0]butane with various kinds of substituents (X4R6; X?=?Si and Ge, R=H, CH3, t-Bu and SiH3) to the corresponding cyclobutene analogues has been investigated by ab initio molecular orbital and DFT methods. Several reaction mechanisms were considered. They are roughly divided into two types; (1) skeletal rearrangement and (2) substituent migration. It was found that substituents (R) have the leading effect on the reaction mechanism but the partial or full replacement of the skeletal silicon atoms by germanium atoms has some important effects as well. Furthermore, the character of the bridge bond of the long-bond and short-bond isomers of these bicyclic compounds was investigated and discussed in comparison with the ?? bond in ethene and disilene by the CiLC analysis.  相似文献   

4.
We report the spectroscopic characterization of protonated monosilanol (SiH3OH2+) isolated in the gas phase, thus providing the first experimental determination of the structure and bonding of a member of the elusive silanol family. The SiH3OH2+ ion is generated in a silane/water plasma expansion, and its structure is derived from the IR photodissociation (IRPD) spectrum of its Ar cluster measured in a tandem mass spectrometer. The chemical bonding in SiH3OH2+ is analyzed by density functional theory (DFT) calculations, providing detailed insight into the nature of the dative H3Si+‐OH2 bond. Comparison with protonated methanol illustrates the differences in bonding between carbon and silicon, which are mainly related to their different electronegativity and the different energy of the vacant valence pz orbital of SiH3+ and CH3+.  相似文献   

5.
Considerable shielding of the 1H and 29Si nuclei due to transannular nitrogen-silicon coupling, which is expressed more clearly than in the case of silatranes, was established on the basis of 1H, 13C, and 29Si NMR data for the methylsilyl group in 1-methyl-2,5,8,9-tetraaza-1-silatricyclo[3.3.3.01,5]undecane (1-methylazasilatrane) and a comparison of these data with the data for the methyl[tris(dimethylamino)]silane model. It is shown that the change in the hybridization of the silicon atom associated with the increase in its coordination number is not only reflected in the chemical shifts but also leads to an increase in 1JCH and 2JSiH.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1063–1064, August, 1977.  相似文献   

6.
The 18e Cp-containing silene tungsten complex, Cp2W(η2-Me2SiCH2), can break H-H bond to afford the product, Cp2WH(SiMe3). The mechanisms on reaction of Cp2W(η2-Me2SiCH2) with H2 are investigated in this paper by using density functional theory (DFT). On the basis of the features of the reaction and experimental proposal for the reaction mechanisms, three possible pathways are proposed, which are related to the migration of silicon group, Cp ring slippage, and σ-bond metathesis, respectively. Our results of calculations indicate that the pathway involving migration of silicon group is the most favored, supporting the experimental observations. The other two paths are quite unfavorable kinetically.  相似文献   

7.
Ab initio and MNDO calculations of VSEPR model were carried out on CH2, CH2+, CH2?, SiH2, SiH2+ and SiH2?. Comparisons between the second row carbon and its third row silicon analogue as unshared electron pair contributors are considered. The repulsion effects as well as the volume requirement of the unshared electron pair on several structural and energetic properties arc investigated.  相似文献   

8.
MP4/6-31+G* level calculations are performed to study the reductive bond-breaking reaction of the C-X bond in halomethanes, CH3X and CH2X2 where X is a fluorine atom or chlorine atom. This type of reaction involves a radical anion, after attaching an extra electron to the halomethane molecule, in which a C-X bond-breaking takes place. Products are a radical and a halogen anion. The equilibrium geometry and bond dissociation energy of the C-X bond thus found are in good agreement with previous theoretical and experimental results. The anomeric effect, electrostatic effect, and radical re-stabilization effect, are investigated to find their influences on bond length and bond dissociation energy in CH3X and CH2X2. Potential energy curves are calculated for the reductive bond-cleavage process, and trends in activation energy for various cases are discussed.  相似文献   

9.
Dicarbon (C2), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas‐phase synthesis is presented of the benzyl radical (C6H5CH2) by the crossed molecular beam reaction of dicarbon, C2(X1Σg+, a3Πu), with 2‐methyl‐1,3‐butadiene (isoprene; C5H8; X1A′) accessing the triplet and singlet C7H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon–carbon double bond of the 2‐methyl‐1,3‐butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7H7 radical species through atomic hydrogen elimination. The benzyl radical (C6H5CH2), the thermodynamically most stable C7H7 isomer, is determined as the major product.  相似文献   

10.
Eric Magnusson 《Tetrahedron》1985,41(14):2945-2948
Substituent interaction energies are calculated by ab initio molecular orbital methods for the two series SiH2X- and SiH3X for the directly bound substituents X = BH2, CH3, NH2, OH, F and the results compared with those for the corresponding first row species. Interactions with the groups NH2, OH, F are as large in the neutral as in the anionic series and this is attributed to the presence of important π-bonding interactions, supplementing the effects of inductive withdrawal of σ-electrons. The restoration of charge neutrality by π-donation to silicon is more important in the neutral molecules, σ-electron transfer from silicon in the anions. π-Bonding with the π-acceptor substitutent BH2 is favourable, as it is in the CH3X and CH2X- systems, but with π-donor substituents the interactions are always destabilizing.  相似文献   

11.
The chemical dynamics of the elementary reaction of ground state atomic silicon (Si; 3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1 exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium-hydrogen bonds forming a triplet collision complex (HSiGeH3; 3 i1 ). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3; 1 i1 ). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomer i5 . This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly-structured isomer 1 p1 (Si(μ-H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts to i6 and i7 , followed by fragmentation of each of these intermediates, could also form 1 p1 (Si(μ-H2)Ge) along with molecular hydrogen. The overall non-adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.  相似文献   

12.
Thiiranium salts [Ad2SR]+X ( 5 , 8 , 9 , 11 , 12 ; X=Tf2N (Tf=CF3SO2), SbCl6) and seleniranium salts [Ad2SeR]+X ( 14 , 16 , 17 , 23 – 25 ; X=Tf2N, BF4, CHB11Cl11, SbCl6) are synthesized from strained alkene bis(adamantylidene) ( 1 ). The disulfides and the diselenides (Me3SiCH2CH2E)2 ( 4 , 13 ), (tBuMe2SiCH2CH2E)2 ( 7 , 22 ), and (NCCH2CH2E)2 ( 10 , 15 ; E=S, Se) have been used. The thiirenium salts [tBu2C2SR]+X ( 34 ) and [Ad2C2SR]+X ( 35 , 36 ) are prepared from the bis-tert-butylacetylene ( 2 ) and bis-adamantyl-acetylene ( 3 ) with R=Me3SiCH2CH2 and tBuMe2SiCH2CH2. Attempts to cleave off the groups Me3SiCH2CH2, tBuMe2SiCH2CH2, and NCCH2CH2 resulted in thiiranes 27 , 30 . No selenirane Ad2Se ( 33 ) is formed from seleniranium salts, instead cleavage to the alkene ( 1 ) and diselenide ( 13 , 15 ) occurs. The thiirenium salt [Ad2C2SCH2CH2SiMe3]+Tf2N ( 35 ) does not yield the thiirene Ad2C2S ( 37 ), the three-membered ring is cleaved, forming the alkyne ( 3 ) and disulfide ( 4 ). All compounds are characterized by ESI mass spectra, NMR spectra, and by quantum chemical calculations. Crystal structures of the salts 8 , 12 , 25 , 17 , 26 , 36 and the thiiranes 27 , 30 are presented.  相似文献   

13.
The thermal decompositions of ethyltrichloro-and ethyltrimethyl-silane have been studied in the gas phase at 823K. The main primary process in each case is the dehydrosilylation reaction X3SiCH2CH3 → X3SiH+CH2 = CH2 (X = Cl or Me), though several additional products are formed, mainly in secondary reactions. It is concluded that the dehydrodesilylations involve a radical chain sequence, and that the formation of vinyl chloride by dehydrosilylation during the thermolysis of (2-chloroethyl) trichlorosilane probably also follows a radical pathway rather than the four-centre molecular process previously suggested.The following reactions at ca. 823K have also been briefly examined: (i) the thermal decomposition of trichlorosilane; (ii), the interaction of ethylene and tri-chlorosilane; (iii) the thermal decomposition of vinyltrichlorosilane.  相似文献   

14.
《Mendeleev Communications》2022,32(5):686-687
Novel N-isopropyl-N',N'-dimethyl-N-(silylmethyl)ureas Me2NC(O)N(Pri)CH2SiMenX3–n (X = OEt, F; n = 0–2) were synthesized, and their structure was confirmed by 1H, 13C and 29Si NMR spectroscopy. According to NMR data, the silicon atom of the fluorosilanes (X = F) is pentacoordinated. The X-ray diffraction analysis of the (trifluorosilyl)methylcontaining urea showed that it exists as (O–Si) chelate with intramolecular dative bond C=O→Si (1.880 Å).  相似文献   

15.
Time-resolved investigations of the atomic resonance fluorescence Sr(53P1 → 51S0) and the molecular chemiluminescence from SrCl(A2Π1/2,3/2, B2Σ+ → X2Σ+) are reported following the reaction of the electronically excited strontium atom, Sr(5s5p(3PJ)), 1.807 eV above its 5s2(1S0) electronic ground state, with CH2Cl2. The optically metastable strontium atom was generated by pulsed dye-laser excitation of ground state strontium vapor to the Sr(53P1) state at λ = 689.3 nm (Sr(53P1 ← 51S0)) at elevated temperature (850 K) in the presence of excess helium buffer gas in which rapid Boltzmann equilibration within the 53PJ manifold takes place. Sr(53PJ) was then monitored by time-resolved atomic fluorescence from Sr(53P1) at the resonance wavelength together with chemiluminescence from electronically excited SrCl resulting from reaction of the excited atom with CH2Cl2. The molecular systems recorded in the time-domain were SrCl(A2Π1/2 → X2Σ+) (Δν = 0, λ = 674 nm), SrCl(A2Π3/2 → X2Σ+) (Δν = 0, λ = 660 nm), and SrCl(B2Σ+ → X2Σ+) (Δν = 0, λ = 636 nm). Both the A2Π (179.0 kJ mol?1) and (B2Σ+(188.0) kJ mol?1) states of SrCl are energetically accessible on collision between Sr(3P) and CH2Cl2. Exponential decay profiles for both the atomic and molecular (A,B – X) chemiluminescence emission are observed and the first-order decay coefficients characterized in each case. These are found to be equal under identical conditions and hence SrCl(A2Π, B2Σ+) are shown to arise from direct Cl-atom abstractions on reaction with this halogenated species. The combination of integrated molecular and atomic intensity measurements, coupled with optical sensitivity calibration, yields estimations of the branching ratios into the A1/2,3/2, B, and X states arising from Sr(53 PJ) + CH2Cl2 which are found to be as follows: A1/2, 3.0 × 10?3; A3/2, 1.7 × 10?3; B, 4.4 × 10?4 yielding ΣSrCl(A1/2 + A3/2 + B) = 5.1 × 10?3. As only the X, A and B states of SrCl are accessible on reaction, this indicates an upper limit for the branching ratio into the ground state of 0.995. The present results are compared with previous time-resolved measurements on SrF, Cl, Br(A2Π,B2Σ+ ? X2Σ+) that we have reported on various halogenated species and with analogous chemiluminescence studies on Sr(3P) with other halides obtained from molecular beam measurements. The results are further compared with those from a series of previous analogous investigations in the time-domain we have presented of molecular emissions from CaF, Cl, Br, I (A,B – X) arising from the collisions of Ca(43PJ) with appropriate halides and with branching ratio data for Ca(43PJ) obtained in beam measurements. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Geometries have been optimized using molecular-orbital calculations (a) with a 4-31G Gaussian basis set for carbanions CH2X? where X = H, CH3, NH2, OH, F, C?CH, CH?CH2, CHO, COCH3, CN, and NO2; and (b) with an STO -3G basis set for methyl acetate and acetyl deprotonated methyl acetate. All the carbanions containing unsaturated substituents are planar, with a considerable shortening of the C? X bond. Carbanions containing saturated substituents are pyramidal with the out-of-plane angle α increasing with the electronegativity of the substituent. Double-zeta basis set calculations give proton affinities over the range 449 (for CH3CH2?) to 355 kcal/mol (for CH2NO2?), with all unsaturated anions having smaller affinities than saturated anions. The correlation of proton affinities with 1s binding energies, and with charges on both the carbon of the anion and on the acidic proton of the neutral molecule are examined.  相似文献   

17.
High‐level ab initio calculations show that the formation of radicals, by the homolytic bond fission of Y?R (Y=F, OH, NH2; R=CH3, NH2, OH, F, SiH3, PH2, SH, Cl, NO) bonds is dramatically favored by the association of the molecule with BeX2 (X=H and Cl) derivatives. This finding is a consequence of two concomitant effects, the significant activation of the Y?R bond after the formation of the beryllium bond, and the huge stabilization of the F. (OH., NH2.) radical upon BeX2 attachment. In those cases where R is an electronegative group, the formation of the radicals is not only exergonic, but spontaneous.  相似文献   

18.
We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover nucleophilic substitution at carbon in X?+CH3Y (SN2@C), at silicon in X?+SiH3Y (SN2@Si), at tricoordinate phosphorus in X?+PH2Y (SN2@P3), and at tetracoordinate phosphorus in X?+POH2Y (SN2@P4). The main feature of going from SN2@C to SN2@P is the loss of the characteristic double‐well potential energy surface (PES) involving a transition state [X? CH3? Y]? and the occurrence of a single‐well PES with a stable transition complex, namely, [X? PH2? Y]? or [X? POH2? Y]?. The differences between SN2@P3 and SN2@P4 are relatively small. We explored both the symmetric and asymmetric (i.e. X, Y=Cl, OH) SN2 reactions in our model systems, the competition between backside and frontside pathways, and the dependence of the reactions on the conformation of the reactants. Furthermore, we studied the effect, on the symmetric and asymmetric SN2@P3 and SN2@P4 reactions, of replacing hydrogen substituents at the phosphorus centers by chlorine and fluorine in the model systems X?+PR2Y and X?+POR2Y, with R=Cl, F. An interesting phenomenon is the occurrence of a triple‐well PES not only in the symmetric, but also in the asymmetric SN2@P4 reactions of X?+POCl2? Y.  相似文献   

19.
Chemical relaxation mass spectrometry has been used to study the kinetics and mechanism in the silane-hydrogen-solid silicon system under conditions of glow discharge. The emphasis was on the main processes related to the deposition of amorphous and nanocrystalline silicon thin films. It is shown that under conditions of the deposition of a-Si and nc-Si the dominant reaction channel is the electron impact induced fragmentation of silane into molecular hydrogen and SiH2 radical. The role of other processes, such as hydrogen abstraction, is discussed.  相似文献   

20.
Ab initio and DFT thermochemical study of diradical mechanism of 2 + 2 cycloreversion of parent heterocyclobutanes and 1,3‐diheterocyclobutanes, cyclo‐(CH2CH2CH2X), and cyclo‐(CH2XCH2X), where X = NH, O, SiH2, PH, S, was undertaken by calculating closed‐shell singlet molecules at three levels of theory: MP4/6‐311G(d)//MP2/6‐31G(d)+ZPE, MP4/6‐311G(d,p)//MP2/6‐31G (d,p)+ZPE, and B3LYP/6‐311+G(d,p)+ZPE. The enthalpies of 2 + 2 cycloreversion decrease on going from group 14 to group 16 elements, being substantially higher for the second row elements. Normally endothermic 2 + 2 cycloreversion is predicted to be exothermic for 1,3‐diazetidine and 1,3‐dioxtane. Strain energies of the four‐membered rings were calculated via the appropriate homodesmic reactions. The enthalpies of ring opening via the every possible one‐bond homolysis that results in the formation of the corresponding 1,4‐diradical were found by subtracting the strain energies from the central bond dissociation energies of the heterobutanes CH3CH2—CH2XH, CH3CH2—XCH3, and HXCH2—XCH3. The latter energies were determined via the enthalpies of the appropriate dehydrocondensation reactions, using C—H and X—H bond energies in CH3XH calculated at G2 level of theory. Except 1,3‐disiletane, in which ring‐opening enthalpy attains 69.7 kcal/mol, the enthalpies of the most economical ring openings do not exceed 60.7 kcal/mol. The 1,4‐diradical decomposition enthalpies found as differences between 2 + 2 cycloreversion and ring‐opening enthalpies were negative, the least exothermicity was calculated for ⋅ CH2SiH2CH2CH2. The only exception was 1,3‐disiletane, which being diradical, CH2SiH2CH2SiH2, decomposed endothermically. Since decomposition of the diradical containing two silicon atoms required extra energy, raising the enthalpy of the overall reaction to 78.9 kcal/mol, 1,3‐disiletane was predicted to be highly resisting to 2 + 2 cycloreversion. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:704–720, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20377  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号