首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most multi‐action PtIV prodrugs have bioactive ligands containing carboxylates. This is probably due to the ease of carboxylating the OH axial ligands and because following reduction, the active drug is released. A major challenge is to expand the arsenal of bioactive ligands to include those without carboxylates. We describe a general approach for synthesis of PtIV prodrugs that release drugs with OH groups. We linked the OH groups of gemcitabine (Gem), paclitaxel (Tax), and estramustine (EM) to the PtIV derivative of cisplatin by a carbonate bridge. Following reduction, the axial ligands lost CO2, rapidly generating the active drugs. In contrast, succinate‐linked drugs did not readily release the free drugs. The carbonate‐bridged ctc‐[Pt(NH3)2(PhB)(Gem‐Carb)Cl2] was significantly more cytotoxic than the succinate‐bridged ctc‐[Pt(NH3)2(PhB)(Gem‐Suc)Cl2], and more potent and less toxic than gemcitabine, cisplatin, and co‐administration of cisplatin and gemcitabine.  相似文献   

2.
The structure of the interaction products of (NH4)2[Ru(NO)Cl5] solution with ammonium acetate on heating is studied. The crystal structure of the [Ru(NO)(NH3)3(H2O)Cl][Ru(NO)(NH3)3(OH)Cl] × [Ru(NO)(NH3)Cl4]2Cl-2H2O compound (compound I) containing a previously unknown anion of the nitrosomonoammine series is determined: Cc space group; a = 33.530(7) ?, b = 8.202(2) ?, c = 11.844(2) ?; β= 101.54(3)°.  相似文献   

3.
Physicochemical study of cis-[Pt(NH3)2Cl2] and cis-[Pt(NH3)2Cl2(OH)2] is carried out, and immobilization of platinum complexes on the nanoporous carbon substrate is investigated. The solubility of cis-[Pt(NH3)2Cl2] in 1 M HCl solution is determined, and the average enthalpy of dissolution is calculated: ΔsolH° = 27.3 ± 0.9 kJ/mol. The batch capacity is determined experimentally for cis-[Pt(NH3)2Cl2] and cis- [Pt(NH3)2Cl2(OH)2] to be 32.9 mg/g (0.17 mg-equiv/g) and 47.6 mg/g (0.24 mg-equiv/g), respectively. Immobilization of platinum complexes on the oxidized carbon surface is found to take place due to interaction between carboxy groups and ammine groups of platinum complexes. The resulting heat capacity curves are used to calculate the enthalpies of adsorption for cis-[Pt(NH3)2Cl2] and cis-[Pt(NH3)2Cl2(OH)2] on the oxidized carbon surface, equal to 24.46 and 27.46 kJ/mol, respectively.  相似文献   

4.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The first structural characterization of the text‐book tetraammineberyllium(II) cation [Be(NH3)4]2+, obtained in the compounds [Be(NH3)4]2Cl4 ? 17NH3 and [Be(NH3)4]Cl2, is reported. Through NMR spectroscopic and quantum chemical studies, its hydrolysis products in liquid ammonia were identified. These are the dinuclear [Be2(μ‐OH)(NH3)6]3+ and the cyclic [Be2(μ‐OH)2(NH3)4]2+ and [Be3(μ‐OH)3(NH3)6]3+ cations. The latter species was isolated as the compound [Be3(μ‐OH)3(NH3)6]Cl3 ? 7NH3. NMR analysis of solutions of BeF2 in liquid ammonia showed that the [BeF2(NH3)2] molecule was the only dissolved species. It acts as a strong fluoride‐ion acceptor and forms the [BeF3(NH3)]? anion in the compound [N2H7][BeF3(NH3)]. The compounds presented herein were characterized by single‐crystal X‐ray structure analysis, 9Be, 17O, and 19F NMR, IR, and Raman spectroscopy, deuteration studies, and quantum chemical calculations. The extension of beryllium chemistry to the ammine system shows similarities but also decisive differences to the aquo system.  相似文献   

6.
The electron-rich Pt complex [Pt(IMes)2] (IMes: [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidine]) can be used as precursor for the syntheses of a variety of fluorido ligand containing compounds. The sulfur fluoride SF4 undergoes a rapid oxidative addition at Pt0 to yield trans-[Pt(F)(SF3)(IMes)2]. A photolytic reaction of SF6 at [Pt(IMes)2] in the presence of IMes gave the fluorido complexes trans-[Pt(F)2(IMes)2] and trans-[Pt(F)(SF3)(IMes)2] along with trans-[Pt(F)(SOF)(IMes)2] and trans-[Pt(F)(IMes’)(IMes)] (IMes’: cyclometalated IMes ligand), the latter being products produced by reaction with adventitious water. trans-[Pt(F)(SOF)(IMes)2] and trans-[Pt(F)2(IMes)2] were synthesized independently by treatment of [Pt(IMes)2] with SOF2 or XeF2. A reaction of [Pt(IMes)2] with a HF source gave trans-[Pt(H)(F)(IMes)2], and an intermediate bifluorido complex trans-[Pt(H)(FHF)(IMes)2] was identified. Compound trans-[Pt(H)(F)(IMes)2] converts in the presence of CsF into trans-[Pt(F)(IMes’)(IMes)].  相似文献   

7.
A series of homo‐ and hetero‐trinuclear cobalt(II) complexes [Co3(L)(OAc)2(CH3CH2OH)(H2O)] ( 1 ), [Co2Ba(L)(OAc)2] ( 2 ) and [Co2Ca(L)(OAc)2]·CHCl3 ( 3 ), containing an acyclic naphthalenediol‐based ligand H4L were synthesized. All the three complexes were characterized by elemental analyses, IR, UV – vis spectra and single crystal X‐ray diffraction analyses. Comparative studies of the structures and spectroscopic properties are carried out on these complexes. All of the complexes show catechol oxidase activities in MeCN. Using UV – vis spectroscopy, we monitored the aerial oxidation of 3,5‐di‐tert ‐butylcatechol (3,5‐DTBCH2) to 3,5‐di‐tert ‐butylquinone (3,5‐DTBQ), which confirms the essential role of these complexes in enhancing the catalytic reaction.  相似文献   

8.
The synthesis of 4′-(2-methylphenyl)-2,2′:6′,2″-terpyridine (L) has been improved. The coordination chemistry of the ligand was explored using Ni(II), Cu(II), Zn(II), and Ag(I) ions. X-ray crystallography, elemental analysis, NMR, and mass spectrometry were used to characterize the 13 new compounds that have been synthesized. Under different reaction conditions, Ni(II), Cu(II), and Zn(II) produced discrete complexes, sometimes containing more than one metal ion, while Ag(I) furnished a polymeric spiral complex in which the central pyridine nitrogen of each terpyridine ligand bridges two Ag(I) ions. Crystallographically characterized complexes are [Ni(L)2]Cl2, [Ni2Cl4(L)2], [Ni(L)(OH2)3]Cl2, [Ni(L)2]Br2, [Cu(L)(OH2)(OSO3)], [Cu3Cl6(L)2], [Cu(L)(OH)(OH2)2]PF6, [Cu(L)2](OTf)2, [Cu(L)(OAc)2], [Zn(L)(OAc)2], [Zn(L)Cl2], [Zn(L)2](NO3)2, [{Ag2(μ-L)2(μ-NO3)}n](NO3)n.  相似文献   

9.
《Polyhedron》1999,18(26):3527-3531
The redox reaction between [Pt(NH3)4]2+ and [W(CN)8]3− in the presence of Cl anions in aqueous solution affords single crystals of [PtII(NH3)4]2[WIV(CN)8] and [PtIV(NH3)4Cl2]Cl2. Trapped cyano ligands of [W(CN)8]4− rectangular antiprisms of D2 point symmetry between parallel Pt(II) square planes show that the inner-sphere redox pathway is prohibited. The presence of Cl counterions enables the formation of [Pt(NH3)4Cl2]Cl2 as the product of the rare outer-sphere pathway of the oxidation of Pt(II) by [W(CN)8]3−.  相似文献   

10.
The structural and spectral data have been obtained by ab initio methods for the [(OH)4Pt(μ-O2)(μ- OH)Pt(OH)4]2?, [(OH)4Pt(μ-O2)(μ-OH)Pt(OH)4(OH)]3?, [(OH)5Pt(μ-O2)Pt(OH)5]3?, and [(H2O)(OH)4Pt(μ- O2)Pt(OH)4(H2O)]- clusters, corresponding to binuclear platinum(IV) superoxo complexes with one and two bridges. The data obtained are in good agreement with experimental data and make it possible to judge the structure of available complexes.  相似文献   

11.
Mono(nucleobase) complexes of the general composition cis‐[PtCl2(NH3)L] with L=1‐methylcytosine, 1‐MeC ( 1 a ) and L=1‐ethyl‐5‐methylcytosine, as well as trans‐[PtX2(NH3)(1‐MeC)] with X=I ( 5 a ) and X=Br ( 5 b ) have been isolated and were characterized by X‐ray crystallography. The Pt coordination occurs through the N3 atom of the cytosine in all cases. The diaqua complexes of compounds 1 a and 5 a , cis‐[Pt(H2O)2(NH3)(1‐MeC)]2+ and trans‐[Pt(H2O)2(NH3)(1‐MeC)]2+, display a rich chemistry in aqueous solution, which is dominated by extensive condensation reactions leading to μ‐OH‐ and μ‐(1‐MeC?N3,N4)‐bridged species and ready oxidation of Pt to mixed‐valence state complexes as well as diplatinum(III) compounds, one of which was characterized by X‐ray crystallography: h,t‐[{Pt(NH3)2(OH)(1‐MeC?N3,N4)}2](NO3)2 ? 2 [NH4](NO3) ? 2 H2O. A combination of 1H NMR spectroscopy and ESI mass spectrometry was applied to identify some of the various species present in solution and the gas phase, respectively. As it turned out, mass spectrometry did not permit an unambiguous assignment of the structures of +1 cations due to the possibilities of realizing multiple bridging patterns in isomeric species, the occurrence of different tautomers, and uncertainties regarding the Pt oxidation states. Additionally, compound 1 a was found to have selective and moderate antiproliferative activity for a human cervix cancer line (SISO) compared to six other human cancer cell lines.  相似文献   

12.
A procedure for the synthesis of mpa h c-[Ru(NO)(NH3)4(OH)]Cl2 in a nearly quantitative yield (~95%) comprising treatment of a solution of (NH4)2[Ru(NO)Cl5] with ammonium carbonate at t ~80°C was developed. It was found that [Ru(NO)(NH3)4(H2O)]Cl3·H2O and trans-[Ru(NO)(NH3)4Cl]Cl2 formed in the reaction of [Ru(NO)(NH3)4(OH)]Cl2 with hydrochloric acid at various temperatures most often contain some initial hydroxy complex. The former compound is unstable, even at room temperature, it slowly eliminates water and HCl. A procedure for preparing the latter compound in a pure state in 85–90% yield was proposed. The acidity constant of the complex trans-[Ru(NO)(NH3)4(H2O)]3+ at room temperature (K a = (4 ± 1) × 10?2) was estimated by 14N NMR spectroscopy.  相似文献   

13.
The conversion of the 1 : 1-complex of Cisplatin with 1-methyluracil (1MeUH), cis-[Pt(NH3)2(1MeU-N3)Cl] ( 1 a ) to the aqua species cis-[Pt(NH3)2(1MeU-N3)(OH2)]+ ( 1 b ), achieved by reaction of 1 a with AgNO3 in water, affords a mixture of compounds, the composition of which strongly depends on sample history. The complexity stems from variations in condensation patterns and partial loss of NH3 ligands. In dilute aqueous solution, 1 a , and dinuclear compounds cis-[(NH3)2(1MeU-N3)Pt(μ-OH)Pt(1MeU-N3)(NH3)2]+( 3 ) as well as head-tail cis-[Pt2(NH3)4(μ-1MeU-N3,O4)2]2+ ( 4 ) represent the major components. In addition, there are numerous other species present in minor quantities, which differ in metal nuclearity, stoichiometry, stereoisomerism, and Pt oxidation state, as revealed by a combination of 1H NMR and ESI-MS spectroscopy. Their composition appears not to be the consequence of a unique and repeating coordination pattern of the 1MeU ligand in oligomers but rather the coexistence of distinctly different condensation patterns, which include μ-OH, μ-1MeU, and μ-NH2 bridging and combinations thereof. Consequently, the products obtained should, in total, be defined as a heterogeneous mixture rather than a mixture of oligomers of different sizes. In addition, a N2 complex, [Pt(NH3)(1MeU)(N2)]+ appears to be formed in gas phase during the ESI-MS experiment. In the presence of Na+ ions, multimers n of 1 a with n=2, 3, 4 are formed that represent analogues of non-metalated uracil quartets found in tetrastranded RNA.  相似文献   

14.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

15.

1-Alkyl-2-(naphthyl-(α/β)-azo)imidazoles (α/β-NaiR; R = Me, Et and CH2Ph) react with (NH4)2[OsCl6] and complexes OsCl2(NaiR)2 are isolated in two isomeric forms: blue-violet (3, 4) and red-violet (5, 6). The ligand is a bidentate N (N(imidazole)), N' (N(azo)) donor type. With reference to the pairs of Cl, Cl; N, N and N', N' atoms the blue-violet and red-violet isomers are assigned to cis-trans-cis (ctc) and cis-cis-cis (ccc) configurations respectively. IR spectra of the complexes show two v(Os-Cl) bands and support the cis-OsCl2 configuration. 1H NMR spectra also support the ctc and ccc-configuration. The structure of the blue-violet complex OsCl2(α-NaiEt)2 has been determined by X-ray crystallography and the ctc configuration has been confirmed. The structure shows an unusually long N=N bond length, 1.331(4) Å, which is elongated by 0.07 Å compared to the free ligand value.  相似文献   

16.
The reactions of [Pt(dpma)(H2O)2]2+ (dpma = 2,2′‐dipyridylmethylamine) and [Pt(dpk)(H2O)2]2+ (dpk = 2,2′‐dipyridylketone) with the model nucleobases 1‐methylthymine (1‐MeT) and 1‐methyluracil (1‐MeU) were studied. Reaction products were characterized by 195Pt NMR spectroscopy and by X‐ray structure analysis. The symmetric dpma and dpk diaqua complexes form dinuclear complexes with 1‐methylthymine, acting as secondary bridging ligand via its N3 and O4 donor atoms. [Pt2(dpma)2(1‐MeT)2](ClO4)2 · H2O ( 5 ) and [Pt2(dpk)(dpk · H2O)(1‐MeT)2](PF6)2 · 4 H2O ( 6 ) both show a head‐to‐head arrangement. Biological tests show a significant in vitro antitumor activity of [Pt(dpk)Cl2] against the human glioma cell line U 87.  相似文献   

17.
The preparation and X‐ray crystal structure analysis of {trans‐[Pt(MeNH2)2(9‐MeG‐N1)2]} ? {3 K2[Pt(CN)4]} ? 6 H2O ( 3 a ) (with 9‐MeG being the anion of 9‐methylguanine, 9‐MeGH) are reported. The title compound was obtained by treating [Pt(dien)(9‐MeGH‐N7)]2+ ( 1 ; dien=diethylenetriamine) with trans‐[Pt(MeNH2)2(H2O)2]2+ at pH 9.6, 60 °C, and subsequent removal of the [(dien)PtII] entities by treatment with an excess amount of KCN, which converts the latter to [Pt(CN)4]2?. Cocrystallization of K2[Pt(CN)4] with trans‐[Pt(MeNH2)2(9‐MeG‐N1)2] is a consequence of the increase in basicity of the guanine ligand following its deprotonation and Pt coordination at N1. This increase in basicity is reflected in the pKa values of trans‐[Pt(MeNH2)2(9‐MeGH‐N1)2]2+ (4.4±0.1 and 3.3±0.4). The crystal structure of 3 a reveals rare (N7,O6 chelate) and unconventional (N2,C2,N3) binding patterns of K+ to the guaninato ligands. DFT calculations confirm that K+ binding to the sugar edge of guanine for a N1‐platinated guanine anion is a realistic option, thus ruling against a simple packing effect in the solid‐state structure of 3 a . The linkage isomer of 3 a , trans‐[Pt(MeNH2)2(9‐MeG‐N7)2] ( 6 a ) has likewise been isolated, and its acid–base properties determined. Compound 6 a is more basic than 3 a by more than 4 log units. Binding of metal entities to the N7 positions of 9‐MeG in 3 a has been studied in detail for [(NH3)3PtII], trans‐[(NH3)2PtII], and [(en)PdII] (en=ethylenediamine) by using 1H NMR spectroscopy. Without exception, binding of the second metal takes place at N7, but formation of a molecular guanine square with trans‐[(Me2NH2)PtII] cross‐linking N1 positions and trans‐[(NH3)2PtII] cross‐linking N7 positions could not be confirmed unambiguously, despite the fact that calculations are fully consistent with its existence.  相似文献   

18.
The reaction of Mn(OAc)2 · 4H2O and 1-alkyl-2-(arylazo)imidazole [RaaiR′ where R = H (a), Me (b); R′ = Me (1/3/), Et (2/4/)] and NH4NCS in MeOH in a 1:2:2 mole ratio afforded [Mn(RaaiR′)2(NCS)2] (3) and (4) complexes. They were characterized by different physicochemical methods and the structure has been confirmed by single crystal X-ray diffraction study for title compound. One of the primary ligands was also characterised by an X-ray diffraction study.  相似文献   

19.
Some mono‐ and dinuclear Hydroxoiridium(I) Complexes The chloro‐bridged iridium(I) compound [Ir2(μ‐Cl)2(C8H14)4] ( 1 ) reacts in the biphasic system benzene/water with KOH in the presence of [NEt3(CH2Ph)]Cl (TEBA) to give the corresponding dinuclear complex [Ir2(μ‐OH)2(C8H14)4] ( 2 ). Stepwise substitution of the cyclooctene ligands by PiPr3 and ethene affords via the intermediate [Ir2(μ‐OH)2(C8H14)2(PiPr3)2] (isolated as a mixture of isomers 3 a , b ) the product [Ir2(μ‐OH)2(C2H4)2(PiPr3)2] ( 4 ) in excellent yield. Reaction of 4 with PiPr3in the molar ratio of 1:2 leads to the formation of the mononuclear compound trans‐[Ir(OH)(C2H4)(PiPr3)2] ( 5 ), the ethene ligand of which cannot be replaced by CPh2 upon treatment with Ph2CN2.  相似文献   

20.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号